Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 169-182    DOI: 10.3724/SP.J.1037.2013.00599
Current Issue | Archive | Adv Search |
SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS
ZHANG Jinyu(), LIU Gang, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049
Cite this article: 

ZHANG Jinyu, LIU Gang, SUN Jun. SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS. Acta Metall Sin, 2014, 50(2): 169-182.

Download:  HTML  PDF(963KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

How to defeat the conflict of strength vs toughness and achieve unprecedented levels of damage tolerance within structural materials is a great challenge for designing microstructure-sensitive materials. The nanostructured metallic multilayers (NMMs) are widely used as essential components of high performance microelectronics and interconnect structures owing to their smart, tunable internal features and their outstanding mechanical properties. The deformation and fracture of NMMs during their service processes has been identified as an important factor influencing their reliability. The present authors had systematically investigated the size and interface effects on the mechanical properties, such as hardness/strength, tensile ductility, fracture toughness, deformation and fracture mechanisms of Cu/X (X=Cr, Nb, Zr) nanolayered films/micropillars, in addition to their microstructure evolution. In this paper, based on these experimental results achieved by the present authors, as well as the progresses at home and abroad made in the deformation and fracture behavior of NMMs, the correlation of microstructure-size constraint-mechanical performance in NMMs (and nanolayered micropillars) is reviewed, and the universities in their deformation and fracture modes and the related mechanisms are revealed. Finally, a brief prospect on the studies of NMMs in future in the light of manipulation of the internal features, origin and dynamics of dislocations and the high performance of NMMs at extreme is discussed.

Key words:  nanostructured metallic multilayer      plastic deformation      fracture behavior      size effect      interface     
Received:  22 September 2013     
ZTFLH:  TG113  
Fund: Supported by National Basic Research Program of China (No.2010CB631003), National Natural Science Foundation of China (Nos.51321003, 51322104 and 51201123), Program of Introducing Talents of Discipline to Universities of China (No.B06025) and China Postdoctoral Science Foundation (No.2012M521765)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00599     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/169

Fig.1  

不同晶体/晶体(fcc/bcc, fcc/fcc, fcc/hcp)与晶体/非晶体系中金属多层膜硬度H与单层厚度h的关系

Fig.2  

晶体/晶体与晶体/非晶体系纳米多层膜微柱体最大强度σmax与h和直径?的关系[27,59,69,71~74]

Fig.3  

调制比η=1.0的Cu/X多层膜延性对h及Cu, Cr薄膜延性对膜厚hM的依赖性[24,84]; Cu/Cr多层膜延性εC随η的变化规律[23,84];断裂韧性KIC和归一化断裂韧性KIC与Cu层厚度hCu的关系曲线[24,84,89]; Cu/Cr多层膜屈服强度σ0.2与εC的线性关系[24,84].

Fig.4  

晶体/晶体多层膜微柱变形模式图[71] (根据现有的实验结果将图分为3个区域: RI为局部剪切变形区, RII为剪切加挤出变形区, RIII为均匀挤出变形区)

Fig.5  

Cu/Cu-Zr晶体/非晶多层膜微柱变形模式机制图[69] (根据现有的实验结果将图分为2个区域: RI为局部剪切变形区, RII为均匀挤出变形区)

[1] Romig Jr A D, Dugger M T, McWhorter P J. Acta Mater, 2003; 51: 5837
[2] Bakonyi I, Péter L. Prog Mater Sci, 2010; 55: 107
[3] Demkowicz M J, Misra A, Caro A. Curr Opin Solid State Mater Sci, 2012; 16: 101
[4] Fullwood D T, Niezgoda S R, Adams B L, Kalidindi S R. Prog Mater Sci, 2010; 55: 477
[5] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1
[6] Nan C W. Heterogeneous Materials Physics: Microstructure and Performance. Beijing: Science Press, 2005: 1
(南策文. 非均质材料物理: 显微结构-性能关联. 北京: 科学出版社, 2005: 1)
[7] Cammarata R C.Prog Surf Sci, 1994; 46: 1
[8] Rao S I, Hazzledine P M. Phil Mag, 2000; 80A: 2011
[9] Chen Y, Liu Y, Sun C, Yu K Y, Song M, Wang H, Zhang X. Acta Mater, 2012; 60: 6312
[10] Liu Y, Bufford D, Wang H, Sun C, Zhang X. Acta Mater, 2011; 59: 1924
[11] Liu Y, Chen Y, Yu K Y, Wang H, Chen J, Zhang X. Int J Plast, 2013; 49: 152
[12] Zhang J Y, Zhang P, Zhang X, Wang R H, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A545: 118
[13] Banerjee R, Ahuja R, Fraser H L. Phy Rev Lett, 1996; 76: 3778
[14] Thompson G B, Banerjee R, Dregia S A, Fraser H L. Acta Mater, 2003; 51: 5285
[15] Dregia S A, Banerjee R, Fraser H L. Scr Mater, 1998; 39: 217
[16] Bruinsma R, Zangwill A M. J Phy, 1986; 47: 2055
[17] Redfield A C, Zangwill A M. Phys Rev, 1986; 34B: 1378
[18] Clemens B M, Kung H, Barnett S A. MRS Bull, 1999; 24: 20
[19] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877
[20] Carpenter J S, Misra A, Uchic M D, Anderson P M. Appl Phys Lett, 2012; 101: 051901
[21] Carpenter J S, Misra A, Anderson P M. Acta Mater, 2012; 60: 2625
[22] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[23] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101
[24] Zhang J Y, Liu G, Zhang X, Zhang G J, Sun J, Ma E. Scr Mater, 2010; 62: 333
[25] Hoagland R G, Kurtz R J, Henager C H. Scr Mater, 2004; 50: 775
[26] Hoagland R G, Mitchell T E, Hirth J P, Kung H. Phil Mag, 2002; 82A: 643
[27] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A. Appl Phys Lett, 2010; 97: 021909
[28] Wang J, Hoagland R G, Hirth J P, Misra A. Acta Mater, 2008; 56: 5685
[29] Wang J, Misra A, Hoagland R G, Hirth J P. Acta Mater, 2012; 60: 1503
[30] Clemens B M, Nix W D, Ramaswamy V. J Appl Phys, 2000; 87: 2816
[31] Lee H J, Kwon K W, Ryu C, Sinclair R. Acta Mater, 1999; 47: 3965
[32] Ouyang G, Wang C X, Yang G W. Appl Phys Lett, 2005; 86: 171914
[33] Lai W S, Yang M J. Appl Phys Lett, 2007; 90: 181917
[34] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A543: 139
[35] Zhang J Y, Zhang X, Niu J J, Liu G, Zhang G J, Sun J. Acta Metall Sin, 2011; 47: 1348
(张金钰, 张 欣, 牛佳佳, 刘 刚, 张国君, 孙 军. 金属学报, 2011; 47: 1348)
[36] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067
[37] Cheng Y Q, Ma E. Prog Mater Sci, 2011; 56: 379
[38] Jang D, Greer J R. Nat Mater, 2010; 9: 215
[39] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E. Nat Mater, 2007; 6: 735
[40] Tian L, Cheng Y Q, Shan Z W, Li J, Wang C C, Han X D, Sun J, Ma E. Nat Commun, 2012; 3: 609
[41] Wang Y M, Li J, Hamza A V, Barbee J T W. Proc Natl Acad Sci USA, 2007; 104: 11155
[42] Kim J J, Choi Y, Suresh S, Argon A S. Science, 2002; 295: 654
[43] Chen H, He Y, Shiflet G, Poon S. Nature, 1994; 367: 541
[44] Zhang J Y, Liu G, Sun J. Sci Rep, 2013; 3: 2324
[45] Koehler J S. Phys Rev, 1970; 2B: 547
[46] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[47] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A543: 139
[48] Wen S, Zong R, Zeng F, Gao Y, Pan F. Acta Mater, 2007; 55: 345
[49] Fu E G, Li N, Misra A, Hoagland R G, Wang H, Zhang X. Mater Sci Eng, 2008; A493: 283
[50] Wei Q M, Li N, Mara N, Nastasi M, Misra A. Acta Mater, 2011; 59: 6331
[51] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[52] Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F. Mater Sci Eng, 2010; A527: 1243
[53] McKeown J, Misra A, Kung H, Hoagland R G, Nastasi M. Scr Mater, 2002; 46: 593
[54] Wen S P, Zong R L, Zeng F, Gao Y, Pan F. J Mater Res, 2011; 22: 3423
[55] Yu K Y, Liu Y, Rios S, Wang H, Zhang X. Surf Coat Technol, 2013; 237: 269
[56] Schweitz K O, Chevallier J, Bottiger J, Matz W, Schell N. Phil Mag, 2001; 81A: 2021
[57] Zhang J Y, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J. Mater Sci Eng, 2012; A552: 392
[58] Wen S, Zeng F, Gao Y, Pan F. Scr Mater, 2006; 55: 187
[59] Knorr I, Cordero N M, Lilleodden E T, Volkert C A. Acta Mater, 2013; 61: 4984
[60] Anderson P M, Li C. Nanostruct Mater, 1995; 5: 349
[61] Rao S I, Dimiduk D M, Parthasarathy T A, Uchic M D, Woodward C. Acta Mater, 2013; 61: 2500
[62] Embury J D, Hirth J P. Acta Metall Mater, 1994; 42: 2051
[63] Phillips M A, Clemens B M, Nix W D. Acta Mater, 2003; 51: 3157
[64] Misra A, Hirth J P, Kung H. Phil Mag, 2002; 82A: 2935
[65] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J. Scr Mater, 2007; 57: 117
[66] Greer J R, De Hosson J T M. Prog Mater Sci, 2011; 56: 654
[67] Kraft O, Gruber P A, Mönig R, Weygand D. Annu Rev Mater Res, 2010; 40: 293
[68] Uchic M D, Shade P A, Dimiduk D M. Annu Rev Mater Res, 2009; 39: 361
[69] Zhang J Y, Liu G, Lei S Y, Niu J J, Sun J. Acta Mater, 2012; 60: 7183
[70] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 1610
[71] Zhang J Y, Lei S, Niu J, Liu Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 4054
[72] Mara N A, Bhattacharyya D, Dickerson P, Hoagland R G, Misra A. Appl Phys Lett, 2008; 92: 231901
[73] Wang J, Yang C, Hodgson P D. Scr Mater, 2013; 69: 626
[74] Kim Y B, Budiman A S, Baldwin J K, Mara N A, Misra A. J Mater Res, 2012; 27: 592
[75] Han S M, Phillips M A, Nix W D. Acta Mater, 2009; 57: 4473
[76] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[77] Schiotz J, Jacobsen K W. Science, 2003; 301: 1357
[78] Zhang J Y, Cui J C, Liu G, Sun J. Scr Mater, 2013; 68: 639
[79] Gu X W, Loynachan C N, Wu Z, Zhang Y W, Srolovitz D J, Greer J R. Nano Lett, 2012; 12: 6385
[80] Tschopp M A, McDowell D L. Appl Phys Lett, 2007; 90
[81] Cheng S, Spencer J A, Milligan W W. Acta Mater, 2003; 51: 4505
[82] Huang H, Spaepen F. Acta Mater, 2000; 48: 3261
[83] Mara N A, Bhattacharyya D, Hoagland R G, Misra A. Scr Mater, 2008; 58: 874
[84] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J. Acta Mater, 2011; 59: 7368
[85] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2011; A528: 2982
[86] Kim J Y, Jang D C, Greer J R. Adv Funct Mater, 2011; 21: 4550
[87] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[88] Niu R M, Liu G, Wang C, Zhang G, Ding X D, Sun J. Appl Phys Lett, 2007; 90: 161907
[89] Zhang J Y, Wu K, Zhang P, Wang R H, Liu G, Zhang G J, Sun J. J Appl Phys, 2012; 111: 113519
[90] Arsenault R J, Fishman S, Taya M. Prog Mater Sci, 1994; 38: 1
[91] Pei H J, Lee C J, Du X H, Chang Y C, Huang J C. Mater Sci Eng, 2011; A528: 7317
[92] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 3rd Ed., New York: John Wiley & Sons Inc, 1989: 1
[93] Chan K S, Kim Y W. Acta Metall Mater, 1995; 43: 439
[94] Cao H C, Evans A G. Acta Metall Mater, 1991; 39: 2997
[95] Hsia K J, Suo Z, Yang W. J Mech Phys Solids, 1994; 42: 877
[96] Huang Y, Zhang H W, Wu F. Int J Solids Struct, 1994; 31: 2753
[97] Huang Y, Zhang H W. Acta Metall Mater, 1995; 43: 1523
[98] Shaw M C, Clyne T W, Cocks A C F, Fleck N A, Pateras S K. J Mech Phys Solids, 1996; 44: 801
[99] Hwu K L, Derby B. Acta Mater, 1999; 47: 545
[100] Hwu K L, Derby B. Acta Mater, 1999; 47: 529
[101] Lloyd D J. Scr Mater, 2003; 48: 341
[102] Jain M, Allin J, Lloyd D J. Int J Mech Sci, 1999; 41: 1273
[103] Cockcroft M G, Latham D J. J Inst Met, 1968; 96: 33
[104] Zhang J Y, Zhang P, Wang R H, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A554: 116
[105] Zhang J Y, Zhang X, Liu G, Wang R H, Zhang G J, Sun J. Mater Sci Eng, 2011; A528: 7774
[106] Gruber P A, Arzt E, Spolenak R. J Mater Res, 2009; 24: 1906
[107] Misra A, Hoagland R G. J Mater Sci, 2007; 42: 1765
[108] Wang F, Huang P, Xu M, Lu T J, Xu K W. Mater Sci Eng, 2011; A528: 7290
[109] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P. J Mater Res, 2009; 24: 728
[110] Li Y P, Zhu X F, Tan J, Wu B, Zhang G P. Philos Mag Lett, 2009; 89: 66
[111] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A. J Mater Res, 2009; 24: 1291
[112] Wen S P, Zeng F, Pan F, Nie Z R. Mater Sci Eng, 2009; A526: 166
[113] Li N, Mara N A, Wang Y Q, Nastasi M, Misra A. Scr Mater, 2011; 64: 974
[114] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M. Thin Solid Films, 2011; 519: 3213
[115] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y. Appl Phys Lett, 2008; 92: 161905
[116] Zhu X F, Zhang G P, Yan C, Zhu S J, Sun J. Philos Mag Lett, 2010; 90: 413
[117] Niu J J, Zhang P, Wang R H, Zhang J Y, Liu G, Zhang G J, Sun J. Mater Sci Eng, 2012; A539: 68
[118] Niu J J, Zhang J Y, Liu G, Zhang P, Lei S Y, Zhang G J, Sun J. Acta Mater, 2012; 60: 3677
[119] Liu Y, Bufford D, Rios S, Wang H, Chen J, Zhang J Y, Zhang X. J Appl Phys, 2012; 111: 073526
[120] Bufford D, Bi Z, Jia Q X, Wang H, Zhang X. Appl Phys Lett, 2012; 101: 223112
[121] Zhang J Y, Liu G, Sun J. Acta Mater, 2013; 61: 6868
[122] Lei S Y, Zhang J Y, Niu J J, Liu G, Zhang X, Sun J. Scr Mater, 2012; 66: 706
[123] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J. Acta Mater, 2012; 60: 1610
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[3] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[4] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[5] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[6] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[7] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[9] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[10] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[11] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[12] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[13] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[14] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[15] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
No Suggested Reading articles found!