Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 453-472    DOI: 10.11900/0412.1961.2020.00428
Overview Current Issue | Archive | Adv Search |
Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses
QU Ruitao1,2(), WANG Xiaodi1, WU Shaojie1, ZHANG Zhefeng1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses. Acta Metall Sin, 2021, 57(4): 453-472.

Download:  HTML  PDF(3850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plastic deformation of metallic glasses (MGs) at room temperature usually localizes into shear bands. The shear banding behavior dominates the deformation and fracture mechanisms of MGs and affects their mechanical properties (e.g., strength, plasticity, fracture toughness, fatigue properties, etc.). The shear banding behavior is of vital importance for understanding and improving mechanical properties of MGs; therefore, studies on shear bands have been long-standing hot topics in the MG field. In this paper, based on the previous studies of shear banding behaviors in various MGs, the mechanisms of shear band propagation, cracking, and unstable fracture under monotonic and cyclic loadings are elucidated. The experimental evidence of progressive shear band propagation under uniaxial loading is provided and the mechanisms of shear band cracking under compression are revealed. It is found that the “cold” fracture of shear band can occur when reducing sample size, adding external confinement, or decreasing the testing temperature to stabilize the shear band propagation. Under cyclic loading, the shear-band-mediated fatigue crack initiation and cracking mechanisms are confirmed. Furthermore, the fragmentation in brittle MGs under compression should be caused by split cracking from defects. The effect of sample size on competition between shearing and splitting for brittle MGs is also discussed. Finally, the significant role of external defects (e.g., notches) on shear banding behavior is described and a “defect engineering” strategy for tailoring the mechanical properties of MGs is proposed.

Key words:  metallic glass      shear band      crack      notch      size effect     
Received:  27 October 2020     
ZTFLH:  TG139.8  
Fund: National Natural Science Foundation of China(51771205);Natural Science Foundation of Liaoning Province(2020-MS-011);Liaoning Revitalization Talents Program(XLYC1808027)
About author:  ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn
QU Ruitao, professor, Tel: (024)83970116, E-mail: rtqu@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00428     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/453

Fig.1  Distributions of local shear offset along the shear band (BMG—bulk metallic glass, λmaxthe maximum shear offset, k0the coefficient. Insets illustrate the inserting and transecting shear bands, which propagate progressively and simultaneously, respectively) [36]
Fig.2  Magnified engineering stress-strain curve of Ti-based metallic glass (MG) close to the macroscopic yielding point (MYP) (Insets illustrate the inserting and transecting shear bands in the MG samples)[36]
Fig.3  Illustration showing the formation of a shear band under compression and the mechanism of apparent work-hardening during progressive propagation (σcontraction and σtraction denote the contraction and traction stresses on the initial shear band, respectively; σiSB and σy are critical stresses for shear band initaiton and propagation, respectively; τ is shear stress; σ and λ are local stress and shear offsets along the distance (x) from point O, respectively; σmax is the maximum stress at the point O, while λmax1 and λmax2 are the maximum shear offsets at the point O, respectively)[36]
Fig.4  Deformation behavior of a Ti-based MG under in situ three-point bending (hT and hC are the maximum heights of shear band (SB) zone in the tension side and compression side of the specimen, respectively)[50]
Fig.5  Observations on shear band cracking behavior of a Zr-based MG under compression[58]
Fig.6  Illustration of the cracking mechanisms of shear band under compression[58] (a-d) evolutions of crack initiation, growth and linkage inside the shear band and shear affected zone during plastic shearing, with the cracking dominated by creation and coalescence of excess free volume (e) crack initiation at local non-planar sites of shear band due to the shearing induced tensile stress component (f) crack initiation at the intersection point of the major shear band and secondary shear band
Fig.7  Comparison of fracture morphologies between unconfined and confined compression[71]
Fig.8  Engineering stress-strain curve, and deformation and fracture morphologies of Vit-105 MG with small-sized sample[70]
Fig.9  Low-temperature gradual cracking behaviors of a Ti-based MG and its explanation[51]
Fig.10  Local shear offset as a function of the distance from the origin site of shear band for one shear band after different loading cycles[88]
Fig.11  Evolution of shear band and variation of fatigue crack length with increasing cyclic number during cyclic compression of an MG[96] (a, b) SEM observations of shear-band evolution under different loading cycles (c) crack length (a) and shear offset (λm) at the origin sit of shear band as a function of cyclic loading number (N) (λm0 is the maximum shear offset for a shear band; Nc,i and Ns,p are the critical loading cycles at which crack initiates and shear-band propagation stops, respectively)
Fig.12  Observations on cracking behavior and illustrations of fragmentation mechanism under macroscopic compression[102]
Fig.13  Nominal compressive strength as a function of radius of hole or pore for the Co-based MG[102] (The dashed lines are the predicted strength curves according to the shear banding dominated fracture mechanism, while the green and red shadow curves give the necessary conditions for splitting cracking of samples with hole and pore, respectively. The green and red shadows were plotted due to the uncertain value of the plane strain fracture toughness of the MG. d is the pillar diameter)
Fig.14  Notch tensile deformation (a, b) and fracture (c) morphologies of a Zr-based MG, and comparison of notch strength ratio between MGs and other alloys (d) (σN—the nominal ultimate tensile stress (UTS) of notched specimen, σT—the UTS of smooth specimen)[19]
Fig.15  Comparisons of tensile, compressive and notch fatigue behaviors between TiZr-based MG and CM400 ultra-high strength steel (UHSS)[20]
Fig.16  An example for defect engineering of MGs: Improving the macroscopic tensile ductility via rapid defect printing (RDP) treatment[132]
1 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
2 Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
3 Steif P S, Spaepen F, Hutchinson J W. Strain localization in amorphous metals [J]. Acta Metall., 1982, 30: 447
4 Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
5 Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
6 Gan K F, Jiang S S, Huang Y J, et al. Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu-Zr based metallic-glass microwires, molecular dynamics simulations, and modelling [J]. Int. J. Plast., 2019, 119: 1
7 Maaß R, Samwer K, Arnold W, et al. A single shear band in a metallic glass: Local core and wide soft zone [J]. Appl. Phys. Lett., 2014, 105: 171902
8 Pan J, Chen Q, Liu L, et al. Softening and dilatation in a single shear band [J]. Acta Mater., 2011, 59: 5146
9 Zhang Y, Greer A L. Thickness of shear bands in metallic glasses [J]. Appl. Phys. Lett., 2006, 89: 071907
10 Liu C, Roddatis V, Kenesei P, et al. Shear-band thickness and shear-band cavities in a Zr-based metallic glass [J]. Acta Mater., 2017, 140: 206
11 Shen L Q, Luo P, Hu Y C, et al. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass [J]. Nat. Commun., 2018, 9: 4414
12 Bokeloh J, Divinski S V, Reglitz G, et al. Tracer measurements of atomic diffusion inside shear bands of a bulk metallic glass [J]. Phys. Rev. Lett., 2011, 107: 235503
13 Schmidt V, Rösner H, Peterlechner M, et al. Quantitative measurement of density in a shear band of metallic glass monitored along its propagation direction [J]. Phys. Rev. Lett., 2015, 115: 035501
14 Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
15 Zhang Z F, Wu F F, He G, et al. Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials [J]. J. Mater. Sci. Technol., 2007, 23: 747
16 Xu J, Ramamurty U, Ma E. The fracture toughness of bulk metallic glasses [J]. JOM, 2010, 62(4): 10
17 Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
18 Demetriou M D, Launey M E, Garrett G, et al. A damage-tolerant glass [J]. Nat. Mater., 2011, 10: 123
19 Qu R T, Zhang P, Zhang Z F. Notch effect of materials: Strengthening or weakening? [J]. J. Mater. Sci. Technol., 2014, 30: 599
20 Wang X D, Qu R T, Wu S J, et al. Notch fatigue behavior: Metallic glass versus ultra-high strength steel [J]. Sci. Rep., 2016, 6: 35557
21 Zhao J X, Qu R T, Wu F F, et al. Fracture mechanism of some brittle metallic glasses [J]. J. Appl. Phys., 2009, 105: 103519
22 Zhang Z F, Zhang H, Shen B L, et al. Shear fracture and fragmentation mechanisms of bulk metallic glasses [J]. Philos. Mag. Lett., 2006, 86: 643
23 Zhang Z F, Wu F F, Gao W, et al. Wavy cleavage fracture of bulk metallic glass [J]. Appl. Phys. Lett., 2006, 89: 251917
24 Wang G, Zhao D Q, Bai H Y, et al. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses [J]. Phys. Rev. Lett., 2007, 98: 235501
25 Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94: 125510
26 Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses [J]. Philos. Mag. Lett., 2005, 85: 77
27 Wang C, Cao Q P, Wang X D, et al. Intermediate temperature brittleness in metallic glasses [J]. Adv. Mater., 2017, 29: 1605537
28 Wu F F, Zheng W, Wu S D, et al. Shear stability of metallic glasses [J]. Int. J. Plast., 2011, 27: 560
29 Klaumünzer D, Maaß R, Löffler J F. Stick-slip dynamics and recent insights into shear banding in metallic glasses [J]. J. Mater. Res., 2011, 26: 1453
30 Shimizu F, Ogata S, Li J. Yield point of metallic glass [J]. Acta Mater., 2006, 54: 4293
31 Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass [J]. Acta Mater., 2003, 51: 1167
32 Jia H L, Wang G Y, Chen S Y, et al. Fatigue and fracture behavior of bulk metallic glasses and their composites [J]. Prog. Mater. Sci., 2018, 98: 168
33 Wright W J, Byer R R, Gu X J. High-speed imaging of a bulk metallic glass during uniaxial compression [J]. Appl. Phys. Lett., 2013, 102: 241920
34 Wright W J, Samale M W, Hufnagel T C, et al. Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass [J]. Acta Mater., 2009, 57: 4639
35 Song S X, Wang X L, Nieh T G. Capturing shear band propagation in a Zr-based metallic glass using a high-speed camera [J]. Scr. Mater., 2010, 62: 847
36 Qu R T, Liu Z Q, Wang G, et al. Progressive shear band propagation in metallic glasses under compression [J]. Acta Mater., 2015, 91: 19
37 Wright W J, Liu Y, Gu X J, et al. Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass [J]. J. Appl. Phys., 2016, 119: 084908
38 Cheng Y Q, Ma E. Intrinsic shear strength of metallic glass [J]. Acta Mater., 2011, 59: 1800
39 Homer E R. Examining the initial stages of shear localization in amorphous metals [J]. Acta Mater., 2014, 63: 44
40 Park K W, Shibutani Y, Falk M L, et al. Shear localization and the plasticity of bulk amorphous alloys [J]. Scr. Mater., 2010, 63: 231
41 Packard C E, Homer E R, Al-Aqeeli N, et al. Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations [J]. Philos. Mag., 2010, 90: 1373
42 Cao Q P, Liu J W, Yang K J, et al. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass [J]. Acta Mater., 2010, 58: 1276
43 Wang D P, Sun B A, Niu X R, et al. Mutual interaction of shear bands in metallic glasses [J]. Intermetallics, 2017, 85: 48
44 Dai L H. Shear banding in bulk metallic glasses [A].
Dodd B, Bai Y L. Adiabatic Shear Localization [M]. Amsterdam: Elsevier, 2012: 311
45 Huang Y J, Khong J C, Connolley T, et al. The onset of plasticity of a Zr-based bulk metallic glass [J]. Int. J. Plast., 2014, 60: 87
46 Qu R T, Calin M, Eckert J, et al. Metallic glasses: Notch-insensitive materials [J]. Scr. Mater., 2012, 66: 733
47 He Q, Shang J K, Ma E, et al. Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness [J]. Acta Mater., 2012, 60: 4940
48 Li D F, Shen Y, Xu J. Bending proof strength of Zr61Ti2Cu25Al12 bulk metallic glass and its correlation with shear-banding initiation [J]. Intermetallics, 2020, 126: 106915
49 Su C, Anand L. Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation [J]. Acta Mater., 2006, 54: 179
50 Qu R T, Liu H S, Zhang Z F. In situ observation of bending stress-deflection response of metallic glass [J]. Mater. Sci. Eng., 2013, A582: 155
51 Wu S J, Wang X D, Qu R T, et al. Gradual shear band cracking and apparent softening of metallic glass under low temperature compression [J]. Intermetallics, 2017, 87: 45
52 Zhou D, Hou B, Li B J, et al. A comparative study of the rate effect on deformation mode in ductile and brittle bulk metallic glasses [J]. Intermetallics, 2018, 96: 94
53 Qu R T, Wu F F, Zhang Z F, et al. Direct observations on the evolution of shear bands into cracks in metallic glass [J]. J. Mater. Res., 2009, 24: 3130
54 Liu C, Das A, Wang W, et al. Shear-band cavities and strain hardening in a metallic glass revealed with phase-contrast X-ray tomography [J]. Scr. Mater., 2019, 170: 29
55 Singh I, Guo T F, Murali P, et al. Cavitation in materials with distributed weak zones: Implications on the origin of brittle fracture in metallic glasses [J]. J. Mech. Phys. Solids, 2013, 61: 1047
56 Guan P F, Lu S, Spector M J B, et al. Cavitation in amorphous solids [J]. Phys. Rev. Lett., 2013, 110: 185502
57 Qu R T, Zhang Z F. Compressive fracture morphology and mechanism of metallic glass [J]. J. Appl. Phys., 2013, 114: 193504
58 Qu R T, Wang S G, Wang X D, et al. Revealing the shear band cracking mechanism in metallic glass by X-ray tomography [J]. Scr. Mater., 2017, 133: 24
59 Spaepen F. On the fracture morphology of metallic glasses [J]. Acta Metall., 1975, 23: 615
60 Spaepen F, Turnbull D. A mechanism for the flow and fracture of metallic glasses [J]. Scr. Metall., 1974, 8: 563
61 Luo J, Shi Y F. Tensile fracture of metallic glasses via shear band cavitation [J]. Acta Mater., 2015, 82: 483
62 Murali P, Guo T F, Zhang Y W, et al. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 215501
63 Maaß R, Birckigt P, Borchers C, et al. Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture [J]. Acta Mater., 2015, 98: 94
64 Zhang Z F, He G, Eckert J, et al. Fracture mechanisms in bulk metallic glassy materials [J]. Phys. Rev. Lett., 2003, 91: 045505
65 Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
金辰日, 杨素媛, 邓学元等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
66 Brennhaugen D D E, Georgarakis K, Yokoyama Y, et al. Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature [J]. Sci. Rep., 2018, 8: 16317
67 Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2006, 5: 15
68 Argon A S, Salama M. The mechanism of fracture in glassy materials capable of some inelastic deformation [J]. Mater. Sci. Eng., 1976, 23: 219
69 Qu R T, Wu S J, Wang S G, et al. Shear banding stability and fracture of metallic glass: Effect of external confinement [J]. J. Mech. Phys. Solids, 2020, 138: 103922
70 Qu R T, Wang S G, Wang X D, et al. Shear band fracture in metallic glass: Sample size effect [J]. Mater. Sci. Eng., 2019, A739: 377
71 Qu R T, Wang S G, Li G J, et al. Shear band fracture in metallic glass: Hot or cold? [J]. Scr. Mater., 2019, 162: 136
72 Chen W, Chan K C, Chen S H, et al. Plasticity enhancement of a Zr-based bulk metallic glass by an electroplated Cu/Ni bilayered coating [J]. Mater. Sci. Eng., 2012, A552: 199
73 Chu J P, Greene J E, Jang J S C, et al. Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating [J]. Acta Mater., 2012, 60: 3226
74 Sun B A, Chen S H, Lu Y M, et al. Origin of shear stability and compressive ductility enhancement of metallic glasses by metal coating [J]. Sci. Rep., 2016, 6: 27852
75 Cao Y F, Xie X, Antonaglia J, et al. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling [J]. Sci. Rep., 2015, 5: 10789
76 Cheng Y Y, Pang S J, Chen C, et al. Tensile plasticity in monolithic bulk metallic glass with sandwiched structure [J]. J. Alloys Compd., 2016, 688: 724
77 Zhang J Y, Liu G, Sun J. Self-toughening crystalline Cu/amorphous Cu-Zr nanolaminates: Deformation-induced devitrification [J]. Acta Mater., 2014, 66: 22
78 Jiang M Q, Wilde G, Chen J H, et al. Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses [J]. Acta Mater., 2014, 77: 248
79 Li G, Jiang M Q, Jiang F, et al. Temperature-induced ductile-to-brittle transition of bulk metallic glasses [J]. Appl. Phys. Lett., 2013, 102: 171901
80 Wu S J, Qu R T, Wang X D, et al. Fracture and strength of a TiZr-based metallic glass at low temperatures [J]. Mater. Sci. Eng., 2019, A768: 138453
81 Zhang Z F, Eckert J. Unified tensile fracture criterion [J]. Phys. Rev. Lett., 2005, 94: 094301
82 Qiao D C, Fan G J, Liaw P K, et al. Fatigue behaviors of the Cu47.5Zr47.5Al5 bulk-metallic glass (BMG) and Cu47.5Zr38Hf9.5Al5 BMG composite [J]. Int. J. Fatigue, 2007, 29: 2149
83 Freels M, Liaw P K, Wang G Y, et al. Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass [J]. J. Mater. Res., 2006, 22: 374
84 Gilbert C J, Lippmann J M, Ritchie R O. Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior [J]. Scr. Mater., 1998, 38: 537
85 Luo J, Dahmen K, Liaw P K, et al. Low-cycle fatigue of metallic glass nanowires [J]. Acta Mater., 2015, 87: 225
86 Wang G Y, Liaw P K, Yokoyama Y, et al. Size effects on the fatigue behavior of bulk metallic glasses [J]. J. Appl. Phys., 2011, 110: 113507
87 Wang G Y, Liaw P K, Peter W H, et al. Fatigue behavior of bulk-metallic glasses [J]. Intermetallics, 2004, 12: 885
88 Wang X D, Qu R T, Liu Z Q, et al. Shear band propagation and plastic softening of metallic glass under cyclic compression [J]. J. Alloys Compd., 2017, 695: 2016
89 Wang X D, Qu R T, Liu Z Q, et al. Shear band-mediated fatigue cracking mechanism of metallic glass at high stress level [J]. Mater. Sci. Eng., 2015, A627: 336
90 Sha Z D, Qu S X, Liu Z S, et al. Cyclic deformation in metallic glasses [J]. Nano Lett., 2015, 15: 7010
91 Ye Y F, Wang S, Fan J, et al. Atomistic mechanism of elastic softening in metallic glass under cyclic loading revealed by molecular dynamics simulations [J]. Intermetallics, 2016, 68: 5
92 Zhang Q S, Deng Y F, Zhang H F, et al. Cyclic softening of Zr55Al10Ni5Cu30 bulk amorphous alloy [J]. J. Mater. Sci. Lett., 2003, 22: 1731
93 Packard C E, Schuh C A. Initiation of shear bands near a stress concentration in metallic glass [J]. Acta Mater., 2007, 55: 5348
94 Wang G Y, Liaw P K, Yokoyama Y, et al. Evolution of shear bands and fatigue striations in a bulk metallic glass during fatigue [J]. Intermetallics, 2012, 23: 96
95 Wang X D, Qu R T, Wu S J, et al. Fatigue damage and fracture behavior of metallic glass under cyclic compression [J]. Mater. Sci. Eng., 2018, A717: 41
96 Wang X D, Qu R T, Liu Z Q, et al. Evolution of shear-band cracking in metallic glass under cyclic compression [J]. Mater. Sci. Eng., 2017, A696: 267
97 Wu F F, Zhang Z F, Shen J, et al. Shear deformation and plasticity of metallic glass under multiaxial loading [J]. Acta Mater., 2008, 56: 894
98 Qu R T, Stoica M, Eckert J, et al. Tensile fracture morphologies of bulk metallic glass [J]. J. Appl. Phys., 2010, 108: 063509
99 Liu Y, Wang Y M, Liu L. Fatigue crack propagation behavior and fracture toughness in a Ni-free ZrCuFeAlAg bulk metallic glass [J]. Acta Mater., 2015, 92: 209
100 Launey M E, Busch R, Kruzic J J. Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Acta Mater., 2008, 56: 500
101 Chen Q J, Shen J, Zhang D L, et al. Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass [J]. J. Mater. Res., 2006, 22: 358
102 Qu R T, Tönnies D, Tian L, et al. Size-dependent failure of the strongest bulk metallic glass [J]. Acta Mater., 2019, 178: 249
103 Sammis C G, Ashby M F. The failure of brittle porous solids under compressive stress states [J]. Acta Metall., 1986, 34: 511
104 Zheng Q, Cheng S, Strader J H, et al. Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system [J]. Scr. Mater., 2007, 56: 161
105 Wu F F, Zhang Z F, Mao S X. Size-dependent shear fracture and global tensile plasticity of metallic glasses [J]. Acta Mater., 2009, 57: 257
106 Han Z, Wu W F, Li Y, et al. An instability index of shear band for plasticity in metallic glasses [J]. Acta Mater., 2009, 57: 1367
107 Greer J R, De Hosson J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J]. Prog. Mater. Sci., 2011, 56: 654
108 Zheng X L, Wang H, Zheng M S, et al. Notch Strength and Notch Sensitivity of Materials: Fracture Criterion of Notched Elements [M]. Beijing: Science Press, 2008: 15
109 Lei X Q, Li C L, Shi X H, et al. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture [J]. Sci. Rep., 2015, 5: 10537
110 Pan J, Wang Y X, Li Y. Ductile fracture in notched bulk metallic glasses [J]. Acta Mater., 2017, 136: 126
111 Yang G N, Qu R T, Xu G D, et al. Understanding the tensile fracture of deeply-notched metallic glasses [J]. Int. J. Solids Struct., 2020, 207: 70
112 Li Q S, Qu R T, Zhang Z F. Shear banding and fracture behaviors of a bulk metallic glass studied via in-situ bending experiments with notched and un-notched specimens [J]. Mater. Sci. Eng., 2020, A798: 140005
113 Qu R T, Zhang Z F. Failure surfaces of high-strength materials predicted by a universal failure criterion [J]. Int. J. Fract., 2018, 211: 237
114 Qu R T, Zhang Z F. A universal fracture criterion for high-strength materials [J]. Sci. Rep., 2013, 3: 1117
115 Qu R T, Eckert J, Zhang Z F. Tensile fracture criterion of metallic glass [J]. J. Appl. Phys., 2011, 109: 083544
116 Sha Z D, Pei Q X, Liu Z S, et al. Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches [J]. Sci. Rep., 2015, 5: 10797
117 Sha Z D, Pei Q X, Sorkin V, et al. On the notch sensitivity of CuZr metallic glasses [J]. Appl. Phys. Lett., 2013, 103: 081903
118 Gludovatz B, Demetriou M D, Floyd M, et al. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 18419
119 Song Z Q, He Q, Ma E, et al. Fatigue endurance limit and crack growth behavior of a high-toughness Zr61Ti2Cu25Al12 bulk metallic glass [J]. Acta Mater., 2015, 99: 165
120 Wang W H. Flow units: The “defects” of amorphous alloys [J]. Sci. Sin. Phys. Mech. Astron., 2014, 44: 396
汪卫华. 非晶中“缺陷”——流变单元研究 [J]. 中国科学: 物理学 力学 天文学, 2014, 44: 396
121 Ding J, Patinet S, Falk M L, et al. Soft spots and their structural signature in a metallic glass [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 14052
122 Murali P, Ramamurty U. Embrittlement of a bulk metallic glass due to sub-Tg annealing [J]. Acta Mater., 2005, 53: 1467
123 Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
124 Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
125 Das A, Dufresne E M, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass [J]. Acta Mater., 2020, 196: 723
126 Li B S, Xie S H, Kruzic J J. Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr-Cu-Ni-Al-Nb bulk metallic glass [J]. Acta Mater., 2019, 176: 278
127 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
128 Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
129 Zhao L, Chan K C, Chen S H, et al. Tunable tensile ductility of metallic glasses with partially rejuvenated amorphous structures [J]. Acta Mater., 2019, 169: 122
130 Song K K, Han X L, Pauly S, et al. Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites [J]. Mater. Des., 2018, 139: 132
131 Wang X D, Qu R T, Wu S J, et al. Improving fatigue property of metallic glass by tailoring the microstructure to suppress shear band formation [J]. Materialia, 2019, 7: 100407
132 Qu R T, Zhang Q S, Zhang Z F. Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment [J]. Scr. Mater., 2013, 68: 845
133 Qu R T, Zhao J X, Stoica M, et al. Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects [J]. Mater. Sci. Eng., 2012, A534: 365
134 Zhao L, Han D X, Guan S, et al. Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding [J]. Mater. Des., 2021, 197: 109246
135 Sarac B, Schroers J. Designing tensile ductility in metallic glasses [J]. Nat. Commun., 2013, 4: 2158
136 Gao M, Dong J, Huan Y, et al. Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass [J]. Sci. Rep., 2016, 6: 21929
137 Feng S D, Li L, Chan K C, et al. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study [J]. J. Mater. Sci. Technol., 2020, 43: 119
138 Zhao J X, Wu F F, Qu R T, et al. Plastic deformability of metallic glass by artificial macroscopic notches [J]. Acta Mater., 2010, 58: 5420
139 Sha Z D, Teng Y, Poh L H, et al. Notch strengthening in nanoscale metallic glasses [J]. Acta Mater., 2019, 169: 147
140 Luo Y, Yang G N, Shao Y, et al. The effect of void defects on the shear band nucleation of metallic glasses [J]. Intermetallics, 2018, 94: 114
141 Chen S H, Yue T M, Tsui C P, et al. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension [J]. Sci. Rep., 2016, 6: 36130
142 Bui T X, Fang T H, Lee C I. Effects of flaw shape and size on fracture toughness and destructive mechanism inside Ni15Al70Co15 metallic glass [J]. Comput. Mater. Sci., 2020, 183: 109807
143 Chen H S, Wang T T. Mechanical properties of metallic glasses of Pd-Si-based alloys [J]. J. Appl. Phys., 1970, 41: 5338
144 Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
145 Wang Q, Jain A. A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses [J]. Nat. Commun., 2019, 10: 5537
146 Tian L, Fan Y, Li L, et al. Identifying flow defects in amorphous alloys using machine learning outlier detection methods [J]. Scr. Mater., 2020, 186: 185
147 Qiao J C, Liu X D, Wang Q, et al. Fast secondary relaxation and plasticity initiation in metallic glasses [J]. Nat. Sci. Rev., 2018, 5: 616
148 Tönnies D, Samwer K, Derlet P M, et al. Rate-dependent shear-band initiation in a metallic glass [J]. Appl. Phys. Lett., 2015, 106: 171907
149 Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 185502
150 Volkert C A, Minor A M. Focused ion beam microscopy and micromachining [J]. MRS Bull., 2007, 32: 389.
151 Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[5] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[6] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[9] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[10] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[11] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[12] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[14] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[15] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
No Suggested Reading articles found!