Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 231-237    DOI: 10.3724/SP.J.1037.2013.00622
Current Issue | Archive | Adv Search |
STUDY ON THE MICROSTRUCTURE EVOLUTION OF Cu-Nb COMPOSITE WIRES DURING DEFORMATION AND ANNEALING
DENG Liping1,2, YANG Xiaofang1, HAN Ke2, SUN Zeyuan1, LIU Qing1()
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400044
2 National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
Cite this article: 

DENG Liping, YANG Xiaofang, HAN Ke, SUN Zeyuan, LIU Qing. STUDY ON THE MICROSTRUCTURE EVOLUTION OF Cu-Nb COMPOSITE WIRES DURING DEFORMATION AND ANNEALING. Acta Metall Sin, 2014, 50(2): 231-237.

Download:  HTML  PDF(4181KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure of as-deformed and annealed Cu-Nb composite wires were investigated by SEM and TEM. Hardness of the as-deformed and annealed samples were measured. The results showed that both the interface density and the rate of interface-increasing increased with increasing strain. When the microstructure reached nano-scale (strain=24.8), the interface density showed a sharp increase which induced a rapid increase in hardness, accompanied by formation of stacking faults and rotation grain boundaries in Cu. During the annealing, the size effect impacted the evolution of microstructure of the multi-scale Cu matrix. The evolution can be classified in to three stages with respect to annealing temperatures: recovery and recrystallization of large Cu, while that of the nano Cu were restrained; recovery and recrystallization of nano Cu; spheroidization and coarsening of Nb.

Key words:  Cu-Nb composite wire      interface density      stacking fault      size effect     
Received:  30 September 2013     
ZTFLH:  TG146.1  
Fund: Supported by National Natural Science Foundation of China (Nos.51031002 and 51201188), Danish National Research Foundation and National Natural Science Foundation of China (No. NSFC-DNRF 51261130091), Natural Science Foundation Project of Chongqing Science and Technology Commission (No.2010BB4074), State Key Laboratory For Advanced Metals and Materials (No.2010ZD-02) and National Science Foundation of United States (No.DMR-0084173)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00622     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/231

Fig.1  

不同应变量下Cu-Nb复合线材试样横截面微观组织SEM像

ε t d
5.0 - 4.5 μm
9.6 147.5 μm 450 μm
14.4 13.7 μm 40 μm
17.7 1.64 μm 3.8 μm
24.8 83.2 nm 215 nm
表1  不同应变量下Cu-Nb复合线材中Nb丝尺寸(d)和间距(t)
Fig.2  

不同应变量下的硬度及界面密度的变化

Fig.3  

应变ε=24.8时试样的TEM像

Fig.4  

应变为24.8的试样纵截面的高分辨率透射电镜图

Fig.5  

应变为24.8的试样在不同温度退火后的TEM像

Fig.6  

应变为24.8试样的硬度随退火温度的变化

[1] Han K, Chen J, Cui B, Davy C A, Kalu P N. Mater Res Soc, 2006; 977: 53
[2] Vidal V, Thilly L, Van Petegem S, Stuhr U, Lecouturier F, Renault P O, Van Swygenhoven H. Scr Mater, 2009; 60: 171
[3] Thilly L, Lecouturier F, von Stebut J. Acta Mater, 2002; 50: 5049
[4] Spitzig W A, Pelton A R, Laabs F C. Acta Metall, 1987; 35: 2427
[5] Liang M, Lu Y, Chen Z, Li C. IEEE T Appl Supercon, 2010; 20: 1619
[6] Spitzig W A, Downing H L, Laabs F C, Gibson E D, Verhoeven J D. Metall Trans, 1993; 24A: 7
[7] Chung J H, Song J S, Hong S I. J Mater Process Technol, 2001; 113: 604
[8] Bevk J, Harbison J P, Bell J. Appl Phys, 1978; 49: 6031
[9] Deng L, Yang X, Han K, Lu Y, Liang M, Liu Q. Mater Charact, 2013; 81: 124
[10] Leprince-Wang Y, Han K, Huang Y, Yu-zhang K. Mater Sci Eng, 2003; A351: 214
[11] Lu Y F, Liang M, Li C S, Feng J Q, Yu Z M, Xu X Y, Liu Q, Liu Z Y. Chin Nonferrous Met, 2012; 22: 1650
(卢亚锋, 梁 明, 李成山, 冯建情, 于泽铭, 徐晓燕, 刘 庆, 柳忠元. 中国有色金属学报, 2012; 22: 1650)
[12] Wang N. PhD Dissertation, University of Toronto, 1997
[13] Thilly T, Veron M, Ludwig O, Lecouturier F. Mater Sci Eng, 2001; A309: 510
[14] Popova E N, Popov V V, Romanov E P, Hlebova N E, Shikov A K. Scr Mater, 2004; 51: 727
[15] Sandim H R Z, Sandim M J R, Bernardi H H, Lins J F C, Raabe D. Bernardi H HScr Mater, 2004; 51: 1099
[16] Thilly L, Lecouturier F, Coffe G, Peyrade J P, Askenazy S. Physica, 2001; 294-295B: 648
[17] Shikov A, Pantsyrnyi V, Vorobieva A, Khlebova N, Silaev A. Physica, 2001; 354C: 410
[18] Han K, Lawson A C, Wood J T, Embury J D, Von Dreele R B, Richardson J W. Philos Mag, 2004; 84: 2579
[19] Han K, Yu-zhang K, Kung H, Embury J D, Daniels B J, Clemens B M. Philos Mag, 2002; 82A: 1633
[20] Liao X Z, Zhao Y H, Srinivasan S G, Zhu Y T. Appl Phys Lett, 2004; 84: 592
[21] Van Swygenhoven H. Science, 2002; 296: 66
[22] Branicio P S, Zhang J Y, Srolovitz D J. Phys Rev, 2013; 88: 1
[23] He J, Liu J B, Meng L. Acta Metall Sin, 2007; 43: 643
(贺 佳, 刘嘉斌, 孟 亮. 金属学报, 2007; 43: 643)
[24] Raabe D, Heringhaus F, Hangen U, Gottstein G. Z Metallkd, 1995; 86: 405
[25] Guo G Z. Pingyuan Univ, 2006; 23: 129
(郭贵中. 平原大学学报, 2006; 23: 129)
[26] Carpenter J S, Vogel S C, LeDonne J E, Hammon D L, Beyerlein I J, Mara N A. Acta Mater, 2012; 60: 1576
[27] Lim S C V, Rollett A D. Mater Sci Eng, 2009; A520: 189
[28] Takata N, Yamada K, Ikeda K-I, Yoshida F, Nakashima H, Tsuji N. Mater Trans, 2007; 48: 2043
[29] Sandim M J R, Sandim H R Z, Bernardi H H, Shigue C Y, Virgens M G D, Ghivelder L, Awaji S, Watanabe K, Iwaki G. Supercond Sci Technol, 2005; 18: 35
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[3] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[6] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[7] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[8] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[9] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[10] Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. 金属学报, 2018, 54(3): 357-366.
[11] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[12] Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN,Lin XIAO,Jun SUN. DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION[J]. 金属学报, 2016, 52(2): 135-142.
[13] Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS[J]. 金属学报, 2016, 52(10): 1249-1258.
[14] Yong SU,Sugui TIAN,Huichen YU,Lili YU. DEFORMATION MECHANISMS OF Ni-BASED SINGLE CRYSTAL SUPERALLOYS DURING STEADY-STATE CREEP AT INTERMEDIATE TEMPERATURES[J]. 金属学报, 2015, 51(12): 1472-1480.
[15] HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS[J]. 金属学报, 2014, 50(2): 137-140.
No Suggested Reading articles found!