|
|
Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel |
Tingguang LIU1,2( ), Shuang XIA2, Qin BAI2, Bangxin ZHOU2 |
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 2 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China |
|
Cite this article:
Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel. Acta Metall Sin, 2018, 54(6): 868-876.
|
Abstract Three-dimensional characterization of grains and grain boundaries is significant to study the microstructure of polycrystalline materials, and is the key to advance the subject of three-dimensional materials science (3DMS). In this work, the technique of serial sectioning by mechanical polishing coupled with 3D electron backscatter diffraction (3D-EBSD) mapping was used to measure the microstructure of a 316L stainless steel in 3D. Volume of the collected 3D-EBSD microstructure is 600 μm×600 μm×257.5 μm, which is quite large to study the 3D microstructure of structural materials with conventional grain size (20~60 μm). Dream3D and in-house developed Matlab programs were used to process the 3D-EBSD data, and subsequently ParaView was used to visualize the grains and grain boundaries in 3D. Combined usage of these tools and in-house programs make the possibility that not only 3D grains but also 3D grain boundaries can be studied in both morphology and quantification. In total, 1840 grains and 9177 grain boundaries are included in the measured 3D-EBSD microstructure. The 3D morphological characteristics and size distributions of grains and grain boundaries in the 316L stainless steel were investigated, including 3D grain size, grain surface area, boundary quantity per grain, grain boundary size and the average boundary size per grain, as well as relationships between these morphological parameters were discussed. Results showed that distributions of all of these morphological parameters of 3D grains and grain boundaries in the polycrystalline 316L steel can be well represented by log-normal distribution, and all relationships of these parameters versus grain size can be well represented by power function. Additionally, the 3D morphologies of most grains in the 316L stainless steel deviate from the ideal equiaxed grains, having complex shapes due to existing of twins, such as semi-sphere shaped, plate shaped and some very complex grains. In many ways, the larger grains have more complex morphology with greater number of faces, larger surface area and larger deviation from equiaxed grains.
|
Received: 27 July 2017
|
|
Fund: Supported by National Natural Science Foundation of China (No.51671122) and Fundamental Research Funds for the Central Universities (No.FRF-TP-16-041A1) |
[1] | Lewis A C, Howe D.Future directions in 3D materials science: Outlook from the first international conference on 3D materials science[J]. JOM, 2014, 66: 670 | [2] | Watanabe T.An approach to grain boundary design for strong and ductile polycrystals[J]. Res. Mech., 1984, 11: 47 | [3] | Hu C L, Xia S, Li H, et al.Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880 | [4] | Liu T G, Xia S, Li H, et al.The highly twinned grain boundary network formation during grain boundary engineering[J]. Mater. Lett., 2014, 133: 97 | [5] | Michiuchi M, Kokawa H, Wang Z J, et al.Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179 | [6] | Schuh C A, Minich R W, Kumar M.Connectivity and percolation in simulated grain-boundary networks[J]. Philos. Mag., 2003, 83: 711 | [7] | Frary M, Schuh C A.Connectivity and percolation behaviour of grain boundary networks in three dimensions[J]. Philos. Mag., 2005, 85: 1123 | [8] | Ullah A, Liu G Q, Luan J H, et al.Three-dimensional visualization and quantitative characterization of grains in polycrystalline iron[J]. Mater. Charact., 2014, 91: 65 | [9] | Xu W, Ferry M, Mateescu N, et al.Techniques for generating 3-D EBSD microstructures by FIB tomography[J]. Mater. Charact., 2007, 58: 961 | [10] | Zaefferer S, Wright S I, Raabe D.Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization[J]. Metall. Mater. Trans., 2008, 39A: 374 | [11] | Wang H Z, Yang P, Mao W M.3D EBSD analysis of morphology and habit plane for lath martensite[J]. J. Mater. Eng., 2013, (4): 74(王会珍, 杨平, 毛卫民. 板条状马氏体形貌和惯习面的3D EBSD分析[J]. 材料工程, 2013, (4): 74) | [12] | Lewis A C, Bingert J F, Rowenhorst D J, et al.Two-and three-dimensional microstructural characterization of a super-austenitic stainless steel[J]. Mater. Sci. Eng., 2006, A418: 11 | [13] | Rowenhorst D J, Gupta A, Feng C R, et al.3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning[J]. Scr. Mater., 2006, 55: 11 | [14] | Luan J H, Liu G Q, Wang H.Three-dimensional reconstruction of grains in pure iron specimen[J]. Acta Metall. Sin., 2011, 47: 69(栾军华, 刘国权, 王浩. 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47: 69) | [15] | Lind J, Li S F, Kumar M.Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials[J]. Acta Mater., 2016, 114: 43 | [16] | Hefferan C M, Lind J, Li S F, et al.Observation of recovery and recrystallization in high-purity aluminum measured with forward modeling analysis of high-energy diffraction microscopy[J]. Acta Mater., 2012, 60: 4311 | [17] | Lin B, Jin Y, Hefferan C M, et al.Observation of annealing twin nucleation at triple lines in nickel during grain growth[J]. Acta Mater., 2015, 99: 63 | [18] | King A, Johnson G, Engelberg D, et al.Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal[J]. Science, 2008, 321: 382 | [19] | Larson B C, Yang W G, Ice G E, et al.Three-dimensional X-ray structural microscopy with submicrometre resolution[J]. Nature, 2002, 415: 887 | [20] | Rowenhorst D J, Lewis A C, Spanos G.Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy[J]. Acta Mater., 2010, 58: 5511 | [21] | Zhang C, Enomoto M, Suzuki A, et al.Characterization of three-dimensional grain structure in polycrystalline iron by serial sectioning[J]. Metall. Mater. Trans., 2004, 35A: 1927 | [22] | Hull F C.Plane section and spatial characteristics of equiaxed β-brass grains[J]. Mater. Sci. Technol., 1988, 4: 778 | [23] | Groeber M, Ghosh S, Uchic M D, et al.A framework for automated analysis and simulation of 3D polycrystalline microstructure: Part 1: Statistical characterization[J]. Acta Mater., 2008, 56: 1257 | [24] | Marrow T J, Babout L, Jivkov A P, et al.Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel[J]. J. Nucl. Mater., 2006, 352: 62 | [25] | Groeber M A, Jackson M A.DREAM. 3D: A digital representation environment for the analysis of microstructure in 3D[J]. Integr. Mater. Manuf. Innov., 2014, 3: 5 | [26] | Groeber M, Ghosh S, Uchic M D, et al.A framework for automated analysis and simulation of 3D polycrystalline microstructures: Part 2: Synthetic structure generation[J]. Acta Mater., 2008, 56: 1274 | [27] | Bhandari Y, Sarkar S, Groeber M, et al.3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis[J]. Comput. Mater. Sci., 2007, 41: 222 | [28] | Ayachit U.The ParaView Guide: A Parallel Visualization Application[M]. New York: Kitware, 2015: 1 | [29] | Feltham P.Grain growth in metals[J]. Acta Metall., 1957, 5: 97 | [30] | Liu T G, Xia S, Wang B S, et al.Grain orientation statistics of grain-clusters and the propensity of multiple-twinning during grain boundary engineering[J]. Mater. Des., 2016, 112: 442 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|