Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1348-1354    DOI: 10.3724/SP.J.1037.2011.00246
论文 Current Issue | Archive | Adv Search |
LENGTH SCALE DEPENDENT MECHANICAL/ELECTRICAL PROPERTIES OF Cu/X (X=Cr, Nb) NANOSTRUCTURED METALLIC MULTILAYERS
ZHANG Jinyu, ZHANG Xin, NIU Jiajia, LIU Gang, ZHANG Guojun, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049
Cite this article: 

ZHANG Jinyu ZHANG Xin NIU Jiajia LIU Gang ZHANG Guojun SUN Jun. LENGTH SCALE DEPENDENT MECHANICAL/ELECTRICAL PROPERTIES OF Cu/X (X=Cr, Nb) NANOSTRUCTURED METALLIC MULTILAYERS. Acta Metall Sin, 2011, 47(10): 1348-1354.

Download:  PDF(1074KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By using nanoindentation test and four point probe method, the length scaled dependent mechanical property (hardness/strength) and electrical property (resistivity) of Cu/X(X=Cr, Nb) nanostructured metallic multilayers with equal individual layer thickness were systematically investigated. It is revealed from the microstructural analysis that the modulation structure of Cu/X metallic multilayers is clear, and the preferred growth planes of Cu layer and X layer are {111} and {110}, respectively. The indentation test shows that the hardness/strength of the multilayers increases with reducing modulation period λ. The deformation mechanism of the multilayers transits from the glide of single dislocation in a Cu layer to the interface cutting at a critical modulation period λcc ≈25 nm). The resistivity of Cu/X multilayers is not only related to the scattering of conduction electrons at surfaces/interfaces and grain boundaries, but also affected by the interface condition at small scale. This significant interface effect on the length scale–dependent resistivity is assessed using a modified FS–MS model. The best combination of strength–resistivity can be achieved by tailoring the microstructure of Cu/X nanostructured metallic multilayers.
Key words:  Cu/Cr      Cu/Nb      nanostructured multilayer      strength      resistivity      size effect     
Received:  19 April 2011     
Fund: 

Supported by National Basic Research Program of China (No.2010CB631003) and National Natural Science Foundation of China (No.50971097)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00246     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1348

[1] Spearing S M. Acta Mater, 2000; 48: 179

[2] Suo Z G, Vlassak J, Wagner S. China Particuology, 2005; 3: 321

[3] Bakonyi I, P´eter L. Prog Mater Sci, 2010; 55: 107

[4] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1

[5] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877

[6] Wang M, Zhang B, Zhang G P, Yu Q Y, Liu C S. J Mater Sci Technol, 2009; 25: 699

[7] Misra A, Krug H. Adv Eng Mater, 2001; 3: 217

[8] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817

[9] Fu E G, Li N, Misra A, Hoagland R G, Wang H, Zhang X. Mater Sci Eng, 2008; A493: 283

[10] McKeown J, Misra A, Kung H, Hoagland R G, Nastasi M. Scr Mater, 2002; 46: 593

[11] Liu Y, Bufford D, Wang H, Sun C, Zhang X. Acta Mater, 2011; 59: 1924

[12] Anderson P M, Li C. Nanostruct Mater, 1995; 5: 349

[13] Embury J D, Hirth J P. Acta Metall Mater, 1994; 42: 2051

[14] Phillips M A, Clemens B M, Nix W D. Acta Mater, 2003; 51: 3171

[15] Koehler J S. Phys Rev, 1970; 2B: 547

[16] Rao S I, Hazzledine P M. Philos Mag, 2000; 80A: 2011

[17] Hoagland R G, Kurtz R J, Henager Jr C H. Scr Mater, 2004; 50: 775

[18] Schroder K, Hollander J. Thin Solid Films, 2004; 458: 322

[19] Liu H D, Zhao Y P, Ramanath G, Murarka S P, Wang G C. Thin Solid Films, 2001; 384: 151

[20] Liu M X, Xu K W. J Mater Res, 2008; 23: 1658

[21] Fuchs K. Proc Cambridge Philos Soc, 1938; 34: 100

[22] Sondheimer E H. Adv Phys, 2001; 50: 499

[23] Mayadas A F, Shatzkes M. Phys Rev, 1970; 1B: 1382

[24] Camacho J M, Oliva A I. Thin Solid Films, 2006; 515: 1881

[25] Durkan C, Welland M E. Phys Rev, 2000; 61B: 14215

[26] Jin X, Zhou Y, Kim C O, Lee Y P, Xu H B, Gong S K. J Appl Phys, 2002; 91: 6071

[27] Namba Y. Jpn J Appl Phys, 1970; 9: 1326

[28] Michez L A, Hickey B J, Shatz S, Wiser N. Phys Rev, 2004; 70B: 052402

[29] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564

[30] Deng X, Chawla N, Chawla K K, Koopman M. Acta Mater, 2004; 52: 4291

[31] Garrido Maneiro M A, Rodr´?guez J. Scr Mater, 2005; 52: 593

[32] Ma Z S, Long S G, Zhou Y C, Pan Y. Scr Mater, 2008; 59: 195

[33] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101

[34] Misra A, Hundley M F, Hristova D, Kung H, Mitchell T E, Nastasi M, Embury J D. J Appl Phys, 1999; 85: 302

[35] Lima A L, Zhang X, Misra A, Booth C H, Bauer E D, Hundley M F. Thin Solid Films, 2007; 515: 3574

[36] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422

[37] Anderoglu O, Misra A, Wang H, Ronning F, Hundley M F, Zhang X. Appl Phys Lett, 2008; 93: 083108
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[8] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[12] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[13] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[15] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
No Suggested Reading articles found!