Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1249-1258    DOI: 10.11900/0412.1961.2016.00315
Orginal Article Current Issue | Archive | Adv Search |
SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS
Jun SUN(),Jinyu ZHANG,Kai WU,Gang LIU
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Download:  HTML  PDF(1051KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanostructured metallic multilayers (NMMs) are widely used as essential components of high performance microelectronics and interconnect structures. The deformation and damage of NMMs is the essential factor leading to the structural failure of these systems. In this paper, based on these experimental results achieved by the authors, as well as the state-of-the-art and progress at home and abroad in the plastic deformation behavior of micropillars of Cu-based NMMs, the correlation of microstructure-size constraint-mechanical performance in the Cu-based nanolayered micropillars is illustrated. The universality of their deformation modes and internal damage mechanisms are revealed, and the work hardening /softening behaviors of two types of nanolaminates, including crystalline/crystalline and crystalline/amorphous NMMs, are summarized. Finally, a brief prospect on the studies of NMMs in future is suggested.

Key words:  nanostructured metallic multilayer      micro-pillar      plastic deformation      fracture and damage      size effect     
Received:  19 July 2016     
ZTFLH:     
Fund: Supported by National Basic Research Program of China (No.2010CB631003), National Natural Science Foundation of China (Nos.51571157, 51321003, 51322104 and 51201123), Program of Introducing Talents of Discipline to Universities of China (No.B06025) and Natural Science Basic Research Plan in Shaanxi Province of China (No.2015JM5158)

Cite this article: 

Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS. Acta Metall Sin, 2016, 52(10): 1249-1258.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00315     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1249

Fig.1  Relationship between hardness (H) and the layer thickness (h) for different crystalline/crystalline (fcc/bcc, fcc/fcc, fcc/hcp) and crystalline/amorphous systems[33] (H-P—Hall-Petch, CLS—confined layer slip, IBS—interface barrier strength)
Fig.2  Relationship between maximum strength (σmax) and h (a), and diameter ? (b) for different crystalline/crystalline and crystalline/amorphous nanolayered micropillars
Fig.3  Strain rate sensitivity exponent m as a function of plastic strain εp for Cu nanostructures, including Cu NTs, Cu NCs, nanotwinned Cu with fine and coarse nano-twins (a), and Cu-based nanolayered pillars, including Cu/X (X=Cr, Zr) NTNLs, Cu/X NCNLs, Cu/Cu-Zr C/ANLs and Cu/Ni micropillars (b) [49] (NTs—nano-twinned multicrystalline micropillars, NCs—nanocrystalline multicrystalline micropillars, NTNLs—nano-twinned nanolayered micropillars, NCNLs—nanocrystalline nanolayered micropillars, C/ANLs—crystalline/amorphous nanolayered micropillars)
Fig.4  Strain hardening rate θ as a function of layer/film thickness h for Cu single and multilayers[38,39,57] (a) and the strain hardening exponent n as a function of layer thickness h for multilayers and of grain size d for Cu[58-60] (b) (NLPs—nanolayered micropillars)
Fig.5  Deformation mode- map for crystalline/crystalline nanolayered micropillars (Experimental observations are summarized with data symbols: shear localization (half square) in RI, shear+extrusion deformation (half circle) in RII, homogeneous uniform extrusion and barreling deformation (half diamond) in RIII; β—aspect ratio)
Fig.6  Deformation mode maps for Cu/Zr nanolayered micropillars with interfacial mismatch δ=11.2% (Four regimes, i.e., RI: localized shearing, RII: shear bands+codeformation, RIII: shear bands+extrusion, and RIV: extrusion+localized debonding, are included in the damage mode-map[38])
Fig.7  Deformation mode-map for Cu/Cu- Zr crystalline/amorphous nanolayered micropillars (Regime I, RI, and regime II, RII, represent shear band deformation and homogeneous- like deformation, respectively).
[1] Was G S, Foecke T.Thin Solid Films, 1996; 286: 1
[2] Li Y P, Zhang G P.Acta Mater, 2010; 58: 3877
[3] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2011; 59: 7368
[4] Romig Jr A D, Dugger M T, McWhorter P J.Acta Mater, 2003; 51: 5837
[5] Fullwood D T, Niezgoda S R, Adams B L, Kalidindi S R.Prog Mater Sci, 2010; 55: 477
[6] Beyerlein I J, Demkowicz M J, Misra A, Uberuaga B P.Prog Mater Sci, 2015; 74: 125
[7] Greer J R, de Hosson J T M.Prog Mater Sci, 2011; 56: 654
[8] Zhu T, Li J.Prog Mater Sci, 2010; 55: 710
[9] Uchic M D, Shade P A, Dimiduk D M.Annu Rev Mater Res, 2009; 39: 361
[10] Nan C W.Heterogeneous Materials Physics: Microstructure and Performance. Beijing: Science Press, 2005: 1
[10] (南策文. 非均质材料物理-显微结构-性能关联. 北京: 科学出版社, 2005: 1)
[11] Cammarata R C.Prog Surf Sci, 1994; 46: 1
[12] Hoagland R G, Kurtz R J, Henager C H.Scr Mater, 2004; 50: 775
[13] Hoagland R G, Mitchell T E, Hirth J P, Kung H.Phil Mag, 2002; 82: 643
[14] Wang J, Hoagland R G, Hirth J P, Misra A.Acta Mater, 2008; 56: 5685
[15] Wang J, Misra A, Hoagland R G, Hirth J P.Acta Mater, 2012; 60: 1503
[16] Wang Y M, Li J, Hamza A V, Barbee J T W.Proc Natl Acad Sci USA, 2007; 104: 11155
[17] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J.Scr Mater, 2010; 63: 101
[18] Zhang J Y, Niu J J, Zhang X, Zhang P, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2012; A543: 139
[19] Zhang J Y, Zhang P, Zhang X, Wang R H, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2012; A545: 118
[20] Zhang J Y, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J.Mater Sci Eng, 2012; A552: 392
[21] Wu K, Zhang J Y, Liu G, Zhang P, Cheng P M, Zhang G J, Sun J.Acta Mater, 2013; 61: 7889
[22] Wu K, Zhang J Y, Zhang P, Wang Y Q, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2014; A613: 130
[23] Wu K, Zhang J Y, Li J, Wang Y Q, Liu G, Sun J.Acta Mater, 2015; 100: 344
[24] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J.Scr Mater, 2007; 57: 117
[25] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P.J Mater Res, 2009; 24: 728
[26] Wen S P, Zong R L, Zeng F, Gao Y, Pan F.Acta Mater, 2007; 55: 345
[27] Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F.Mater Sci Eng, 2010; A527: 1243
[28] Liu Y, Bufford D, Wang H, Sun C, Zhang X.Acta Mater, 2011; 59: 1924
[29] Liu Y, Bufford D, Rios S, Wang H, Chen J, Zhang J Y, Zhang X.J Appl Phys, 2012; 111: 073526
[30] Lai W S, Yang M J.Appl Phys Lett, 2007; 90: 181917
[31] Zhang J Y, Liu G, Zhang X, Zhang G J, Sun J, Ma E.Scr Mater, 2010; 62: 333
[32] Wang Y Q, Zhang J Y, Liang X Q, Wu K, Liu G, Sun J.Acta Mater, 2015; 95: 132
[33] Zhang J Y, Liu G, Sun J.Mater China, 2016; 35: 31
[33] (张金钰, 刘刚, 孙军. 中国材料进展, 2016; 35: 31)
[34] Mara N A, Bhattacharyya D, Dickerson P, Hoagland R G, Misra A.Appl Phys Lett, 2008; 92: 231903
[35] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A.Appl Phys Lett, 2010; 97: 021909
[36] Zhang J Y, Lei S Y, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J.Acta Mater, 2012; 60: 1610
[37] Zhang J Y, Liu G, Lei S Y, Niu J J, Sun J.Acta Mater, 2012; 60: 4054
[38] Zhang J Y, Li J, Liang X Q, Liu G, Sun J.Sci Rep, 2014; 4: 4205
[39] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2012; 60: 7183
[40] Zhang J Y, Liu G, Sun J.Sci Rep, 2013; 3: 2324
[41] Kim Y B, Budiman A S, Baldwin J K, Mara N A, Misra A.J Mater Res, 2012; 27: 592
[42] Han S M, Phillips M A, Nix W D.Acta Mater, 2009; 57: 4473
[43] Wang J, Yang C, Hodgson P D.Scr Mater, 2013; 69: 626
[44] Zhang J Y, Cui J C, Liu G, Sun J.Scr Mater, 2013; 68: 639
[45] Zhang J Y, Liang X Q, Zhang P, Wu K, Liu G, Sun J.Acta Mater, 2014; 66: 302
[46] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M.Thin Solid Films, 2011; 519: 3213
[47] Wei Q.J Mater Sci, 2007; 42: 1709
[48] Zhang J Y, Liu G, Sun J.Int J Plast, 2013; 50: 1
[49] Zhang J Y, Liu G, Sun J.Acta Mater, 2013; 61: 6868
[50] Zhang J Y, Wang Y Q, Wu K, Zhang P, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2014; A612: 28
[51] Niu J J, Zhang J Y, Liu G, Zhang P, Lei S Y, Zhang G J, Sun J.Acta Mater, 2012; 60: 3677
[52] Zhang J Y, Wang Y Q, Liu G, Sun J.Appl Surf Sci, 2014; 321: 19
[53] Carlton C E, Ferreira P J.Acta Mater, 2007; 55: 3749
[54] Kocks U F, Mecking H.Prog Mater Sci, 2003; 48: 171
[55] Misra A, Zhang X, Hammon D, Hoagland R G.Acta Mater, 2005; 53: 221
[56] Yan J W, Zhu X F, Yang B, Zhang G P.Phys Rev Lett, 2013; 110: 155502
[57] Gruber P A, B?hm J, Onuseit F, Wanner A, Spolenak R, Arzt E.Acta Mater, 2008; 56: 2318
[58] Lei S Y, Zhang J Y, Niu J J, Liu G, Zhang X, Sun J.Scr Mater, 2012; 66: 706
[59] Lu L, Chen X, Huang X, Lu K.Science, 2009; 323: 607
[60] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A.Acta Mater, 2011; 59: 3804
[61] Huang X, Hansen N, Tsuji N.Science, 2006; 312: 249
[62] Knorr I, Cordero N M, Lilleodden E T, Volkert C A.Acta Mater, 2013; 61: 4984
[63] Li N, Mara N A, Wang Y Q, Nastasi M, Misra A.Scr Mater, 2011; 64: 974
[64] Anderson P M, Foecke T, Hazzledine P M.Mater Res Soc Bull, 1999; 24: 27
[65] Misra A, Verdier M, Kung H, Embury J D, Hirth J P.Scr Mater, 1999; 41: 973
[66] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y.Appl Phys Lett, 2008; 92: 161905
[67] Zhang J, Zhang J Y, Liu G, Zhao Y, Sun J.Thin Solid Films, 2009; 517: 2936
[68] Donohue A, Spaepen F, Hoagland R G, Misra A.Appl Phys Lett, 2007; 91: 241905
[69] Chen C Q, Pei Y T, De Hosson J T M.Acta Mater, 2010; 58: 189
[70] Zhang J Y, Liu G, Sun J.Acta Mater, 2014; 66: 22
[71] Kim J Y, Jang D C, Greer J R.Adv Funct Mater, 2011; 21: 4550
[72] Kuzmin O V, Pei Y T, Chen C Q, De Hosson J T M.Acta Mater, 2012; 60: 889
[73] Jang D, Greer J R.Nat Mater, 2010; 9: 215
[74] Kiener D, Minor A M.Acta Mater, 2011; 59: 1328
[75] Beyerlein I J, Caro A, Demkowicz M J, Mara N A, Misra A, Uberuaga B P.Mater Today, 2013; 16: 443
[76] Yu K Y, Liu Y, Fu E G, Wang Y Q, Myers M T, Wang H, Shao L, Zhang X.J Nucl Mater, 2013; 440: 310
[77] Zhang P, Zhang J Y, Li J, Liu G, Wu K, Wang Y Q, Sun J.Acta Mater, 2014; 76: 221
[78] Zhang P, Zhang J Y, Li J, Liu G, Wu K, Wang Y Q, Sun J.J Mater Sci, 2015; 50: 1901
[79] Wang Y Q, Hou Z Q, Zhang J Y, Liang X Q, Liu G, Zhang G J, Sun J.Acta Metall Sin (Engl Lett), 2016; 29: 156
[80] Zhang J Y, Wang Y Q, Liang X Q, Zeng F L, Liu G, Sun J.Acta Mater, 2015; 92: 140
[81] Liang X Q, Zhang J Y, Wang Y Q, Wu S H, Zeng F L, Wu K, Liu G, Zhang G J, Sun J.Mater Sci Eng, 2016; A672: 153
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[3] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[4] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[5] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[6] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[7] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[8] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[9] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[10] Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. 金属学报, 2018, 54(3): 357-366.
[11] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
[12] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[13] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
[14] Jinrui ZHANG, Yanwei ZHANG, Yulin HAO, Shujun LI, Rui YANG. Plastic Deformation Behavior of Biomedical Ti-24Nb-4Zr-8Sn Single Crystal Alloy[J]. 金属学报, 2017, 53(10): 1385-1392.
[15] Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN,Lin XIAO,Jun SUN. DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION[J]. 金属学报, 2016, 52(2): 135-142.
No Suggested Reading articles found!