|
|
Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review |
PENG Liming1,2, DENG Qingchen1,2( ), WU Yujuan1,2, FU Penghuai1,2, LIU Ziyi1,2, WU Qianye1,2, CHEN Kai1,2, DING Wenjiang1,2 |
1.National Engineering Research Center of Light Alloys Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review. Acta Metall Sin, 2023, 59(1): 31-54.
|
Abstract Selective laser melting (SLM) additive manufacturing technology holds the broad prospect for the preparation of high-performance complex metal components owing to its high processing accuracy, short manufacturing cycle, and high material usage. Magnesium (Mg) alloys are the lightest metal structural material and provide the benefits of low density, substantial specific strength and specific stiffness, good damping and shock absorption performance, and good biodegradability. Thus, it is worthwhile to employ SLM to manufacture Mg alloys, which is predicted to widen the application scope of Mg alloys. In this study, a comprehensive review on SLM of Mg alloys focusing on the preparation of Mg alloy powders, SLM process parameters, metallurgical defects, microstructure and mechanical properties of the as-built state, post-processing, and special equipment developed for SLM of Mg alloys is given. Finally, the future development trends of the SLM of Mg alloys are explored.
|
Received: 09 April 2022
|
|
Fund: National Key Research and Development Program of China(2021YFB3701001);National Natural Science Foundation of China(51971130);National Natural Science Foundation of China(U21A2047);National Natural Science Foundation of China(51821001);National Natural Science Foundation of China(U2037601) |
About author: DENG Qingchen, Tel: 18818221692, E-mail: dengqingchen@sjtu.edu.cn
|
1 |
Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
doi: 10.1016/j.jma.2020.06.021
|
2 |
Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
doi: 10.1016/j.jma.2022.04.001
|
3 |
Fu P H, Peng L M, Jiang H, et al. Tensile properties of high strength cast Mg alloys at room temperature: A review [J]. China Foundry, 2014, 11: 277
|
4 |
Lu B H, Li D C, Tian X Y. Development trends in additive manufacturing and 3D printing [J]. Engineering, 2015, 1: 85
doi: 10.15302/J-ENG-2015012
|
5 |
Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
doi: 10.1016/j.jma.2022.03.001
|
6 |
Tandon R, Palmer T, Gieseke M, et al. Additive manufacturing of magnesium alloy powders: Investigations into process development using Elektron®MAP + 43 via laser powder bed fusion and directed energy deposition [A]. World PM 2016 Congress and Exhibition [C]. European Powder Metallurgy Association (EPMA), 2016: 1
|
7 |
Liao H G, Fu P H, Peng L M, et al. Microstructure and mechanical properties of laser melting deposited GW103K Mg-RE alloy [J]. Mater. Sci. Eng., 2017, A687: 281
|
8 |
Zheng D D, Li Z, Jiang Y L, et al. Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition [J]. Addit. Manuf., 2022, 57: 102957
|
9 |
Madhuri N, Jayakumar V, Sathishkumar M. Recent developments and challenges accompanying with wire arc additive manufacturing of Mg alloys: A review [J]. Mater. Today Proc., 2021, 46: 8573
|
10 |
Guo J, Zhou Y, Liu C M, et al. Wire arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency [J]. Materials, 2016, 9: 823480
|
11 |
Holguin D A M, Han S, Kim N P. Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM) [J]. MRS Adv., 2018, 3: 2959
doi: 10.1557/adv.2018.553
|
12 |
Rong W, Zhang Y, Wu Y J, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloys via differential-thermal extrusion [J]. Mater. Charact., 2017, 131: 380
doi: 10.1016/j.matchar.2017.07.031
|
13 |
Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review [J]. Optik, 2020, 207: 163842
doi: 10.1016/j.ijleo.2019.163842
|
14 |
Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Mater., 2013, 61: 1809
doi: 10.1016/j.actamat.2012.11.052
|
15 |
Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
doi: 10.1016/j.actamat.2010.02.004
|
16 |
Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process [J]. Mater. Sci. Eng., 2019, A767: 138327
|
17 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
18 |
Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture [J]. Mater. Des., 2012, 34: 753
doi: 10.1016/j.matdes.2011.06.061
|
19 |
Liu J, Wen P. Metal vaporization and its influence during laser powder bed fusion process [J]. Mater. Des., 2022, 215: 110505
doi: 10.1016/j.matdes.2022.110505
|
20 |
Deng Q C, Wu Y J, Wu Q Y, et al. Microstructure evolution and mechanical properties of a high-strength Mg-10Gd-3Y-1Zn-0.4Zr alloy fabricated by laser powder bed fusion [J]. Addit. Manuf., 2022, 49: 102517
|
21 |
Cao X, Jahazi M, Immarigeon J P, et al. A review of laser welding techniques for magnesium alloys [J]. J. Mater. Process. Technol., 2006, 171: 188
doi: 10.1016/j.jmatprotec.2005.06.068
|
22 |
Brandau B, Da Silva A, Wilsnack C, et al. Absorbance study of powder conditions for laser additive manufacturing [J]. Mater. Des., 2022, 216: 110591
doi: 10.1016/j.matdes.2022.110591
|
23 |
Ng C C, Savalani M M, Man H C, et al. Layer manufacturing of magnesium and its alloy structures for future applications [J]. Virtual Phys. Prototyp., 2010, 5: 13
doi: 10.1080/17452751003718629
|
24 |
Ng C C, Savalani M M, Lau M L, et al. Microstructure and mechanical properties of selective laser melted magnesium [J]. Appl. Surf. Sci., 2011, 257: 7447
doi: 10.1016/j.apsusc.2011.03.004
|
25 |
Gieseke M, Noelke C, Kaierle S, et al. Selective laser melting of magnesium and magnesium alloys[A]. Magnesium Technology2013[M]. Cham: Springer, 2013: 65
|
26 |
Hu D, Wang Y, Zhang D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium [J]. Mater. Manuf. Process., 2015, 30: 1298
doi: 10.1080/10426914.2015.1025963
|
27 |
Niu X M, Shen H Y, Fu J Z, et al. Corrosion behaviour of laser powder bed fused bulk pure magnesium in Hank's solution [J]. Corros. Sci., 2019, 157: 284
doi: 10.1016/j.corsci.2019.05.026
|
28 |
Wei K W, Gao M, Wang Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy [J]. Mater. Sci. Eng., 2014, A611: 212
|
29 |
Pawlak A, Rosienkiewicz M, Chlebus E. Design of experiments approach in AZ31 powder selective laser melting process optimization [J]. Arch. Civ. Mech. Eng., 2017, 17: 9
doi: 10.1016/j.acme.2016.07.007
|
30 |
He C X, Bin S, Wu P, et al. Microstructure evolution and biodegradation behavior of laser rapid solidified Mg-Al-Zn alloy [J]. Metals, 2017, 7: 105
doi: 10.3390/met7030105
|
31 |
Niu X M, Shen H Y, Fu J Z. Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture [J]. Mater. Lett., 2018, 221: 4
doi: 10.1016/j.matlet.2018.03.068
|
32 |
Liu S, Yang W S, Shi X, et al. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy [J]. J. Alloys Compd., 2019, 808: 151160
doi: 10.1016/j.jallcom.2019.06.261
|
33 |
Proaño B, Miyahara H, Matsumoto T, et al. Weakest region analysis of non-combustible Mg products fabricated by selective laser melting [J]. Theor. Appl. Fract. Mech., 2019, 103: 102291
doi: 10.1016/j.tafmec.2019.102291
|
34 |
Pawlak A, Szymczyk P E, Kurzynowski T, et al. Selective laser melting of magnesium AZ31B alloy powder [J]. Rapid Prototyp. J., 2019, 26: 249
doi: 10.1108/RPJ-05-2019-0137
|
35 |
Liu S, Guo H J. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM) [J]. Mater. Lett., 2020, 265: 127463
doi: 10.1016/j.matlet.2020.127463
|
36 |
Liu L, Ma H T, Gao C D, et al. Island-to-acicular alteration of second phase enhances the degradation resistance of biomedical AZ61 alloy [J]. J. Alloys Compd., 2020, 835: 155397
doi: 10.1016/j.jallcom.2020.155397
|
37 |
Liu S, Guo H J. Balling behavior of selective laser melting (SLM) magnesium alloy [J]. Materials (Basel), 2020, 13: 3632
doi: 10.3390/ma13163632
|
38 |
Proaño B, Miyahara H, Matsumoto T, et al. Plastic strain distribution throughout the microstructure duality during the fracture process of non-combustible Mg products fabricated by selective laser melting [J]. Theor. Appl. Fract. Mech., 2020, 110: 102805
doi: 10.1016/j.tafmec.2020.102805
|
39 |
Xu C J, Hua X Y, Ma D, et al. Study on microstructure and properties of selective laser melted (SLM) magnesium alloy AZ91D [J]. Foundry Technol., 2021, 42: 749
|
|
徐春杰, 华心雨, 马 东 等. 选区激光熔化AZ91D镁合金的组织与性能 [J]. 铸造技术, 2021, 42: 749
|
40 |
Wang J Y, Chang Z P, Yue Y F, et al. Effect of particle size distribution of AZ91D magnesium alloy powder on selective laser melting process [J]. Hebei J. Ind. Sci. Technol., 2022, 39: 79
|
|
王金业, 常志鹏, 岳彦芳 等. AZ91D镁合金粉末粒度分布对其选区激光熔化成形的影响 [J]. 河北工业科技, 2022, 39: 79
|
41 |
Zeng Z R, Choudhary S, Esmaily M, et al. An additively manufactured magnesium-aluminium alloy withstands seawater corrosion [J]. npj Mater. Degrad., 2022, 6: 32
doi: 10.1038/s41529-022-00241-5
|
42 |
Wei K W, Wang Z M, Zeng X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components [J]. Mater. Lett., 2015, 156: 187
doi: 10.1016/j.matlet.2015.05.074
|
43 |
Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy [J]. J. Alloys Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
|
44 |
Zhang M, Chen C J, Liu C, et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing [J]. Metals, 2018, 8: 635
doi: 10.3390/met8080635
|
45 |
Shuai C J, Liu L, Zhao M C, et al. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique [J]. J. Mater. Sci. Technol., 2018, 34: 1944
doi: 10.1016/j.jmst.2018.02.006
|
46 |
Wei K W, Zeng X Y, Wang Z M, et al. Selective laser melting of Mg-Zn binary alloys: Effects of Zn content on densification behavior, microstructure, and mechanical property [J]. Mater. Sci. Eng., 2019, A756: 226
|
47 |
Yin Y, Huang Q L, Liang L X, et al. In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications [J]. J. Alloys Compd., 2019, 785: 38
doi: 10.1016/j.jallcom.2019.01.165
|
48 |
Shuai C J, Liu L, Gao C D, et al. Uniform degradation mode and enhanced degradation resistance of Mg alloy via a long period stacking ordered phase in the grain interior [J]. Mater. Res. Express, 2019, 6: 065406
|
49 |
Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. J. Magnes. Alloy., 2020, 8: 952
doi: 10.1016/j.jma.2019.10.004
|
50 |
Yang Y W, Lu C F, Peng S P, et al. Laser additive manufacturing of Mg-based composite with improved degradation behaviour [J]. Virtual Phys. Prototyp., 2020, 15: 278
doi: 10.1080/17452759.2020.1748381
|
51 |
Liu J G, Yin B Z, Sun Z R, et al. Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process [J]. Mater. Lett., 2021, 301: 130283
doi: 10.1016/j.matlet.2021.130283
|
52 |
Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability [J]. Mater. Today Commun., 2021, 26: 101922
|
53 |
Xie B, Zhao M C, Tao J X, et al. Comparison of the biodegradation of ZK30 subjected to solid solution treating and selective laser melting [J]. J. Mater. Res. Technol., 2021, 10: 722
doi: 10.1016/j.jmrt.2020.12.041
|
54 |
Benn F, D'Elia F, Van Gaalen K, et al. Printability, mechanical and degradation properties of Mg-(x)Zn elemental powder mixes processed by laser powder bed fusion [J]. Addit. Manuf. Lett., 2022, 2: 100025
|
55 |
Liang J W, Lei Z L, Chen Y B, et al. Microstructure evolution of laser powder bed fusion ZK60 Mg alloy after different heat treatment [J]. J. Alloys Compd., 2022, 898: 163046
doi: 10.1016/j.jallcom.2021.163046
|
56 |
Liang J W, Lei Z L, Chen Y B, et al. Elimination of extraordinarily high cracking susceptibility of ZK60 Mg alloy fabricated by laser powder bed fusion [J]. Mater. Lett., 2022, 312: 131731
doi: 10.1016/j.matlet.2022.131731
|
57 |
Liang J W, Lei Z L, Chen Y B, et al. Formability, microstructure, and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2022, A839: 142858
|
58 |
Zhou Y Z, Wu P, Yang Y W, et al. The microstructure, mechanical properties and degradation behavior of laser-melted Mg-Sn alloys [J]. J. Alloys Compd., 2016, 687: 109
doi: 10.1016/j.jallcom.2016.06.068
|
59 |
Yang Y W, Wu P, Wang Q Y, et al. The enhancement of Mg corrosion resistance by alloying Mn and laser-melting [J]. Materials (Basel), 2016, 9: 216
doi: 10.3390/ma9040216
|
60 |
Liu C, Zhang M, Chen C J. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing [J]. Mater. Sci. Eng., 2017, A703: 359
|
61 |
Jauer L, Meiners W, Vervoort S, et al. Selective laser melting of magnesium alloys [J]. European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, 2016: 1
|
62 |
Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium [J]. Acta Biomater., 2018, 67: 378
doi: S1742-7061(17)30764-X
pmid: 29242158
|
63 |
Zumdick N A, Jauer L, Kersting L C, et al. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 [J]. Mater. Charact., 2019, 147: 384
doi: 10.1016/j.matchar.2018.11.011
|
64 |
Gangireddy S, Gwalani B, Liu K M, et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy [J]. Addit. Manuf., 2019, 26: 53
doi: 10.1016/j.addma.2018.12.015
|
65 |
Bär F, Berger L, Jauer L, et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis [J]. Acta Biomater., 2019, 98: 36
doi: S1742-7061(19)30383-6
pmid: 31132536
|
66 |
Hyer H, Zhou L, Benson G, et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion [J]. Addit. Manuf., 2020, 33: 101123
|
67 |
Esmaily M, Zeng Z, Mortazavi A N, et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting [J]. Addit. Manuf., 2020, 35: 101321
|
68 |
Li M Z, Benn F, Derra T, et al. Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications [J]. Mater. Sci. Eng., 2021, C119: 111623
|
69 |
Suchý J, Klakurková L, Man O, et al. Corrosion behaviour of WE43 magnesium alloy printed using selective laser melting in simulation body fluid solution [J]. J. Manuf. Process., 2021, 69: 556
doi: 10.1016/j.jmapro.2021.08.006
|
70 |
Liu J G, Liu B C, Min S Y, et al. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation [J]. Bioact. Mater., 2022, 16: 301
|
71 |
Attarzadeh F, Asadi E. Analysis of element loss, densification, and defects in laser-based powder-bed fusion of magnesium alloy WE43 [J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.02.011
|
72 |
Wang W L, Wang D, He L, et al. Thermal behavior and densification during selective laser melting of Mg-Y-Sm-Zn-Zr alloy: Simulation and experiments [J]. Mater. Res. Express, 2020, 7: 116519
doi: 10.1088/2053-1591/abc99b
|
73 |
Wang W L, Yang X, Wang K K. Research on formability, microstructure and mechanical properties of selective laser melted Mg-Y-Sm-Zn-Zr magnesium alloy [J]. Mater. Charact., 2022, 189: 111980
doi: 10.1016/j.matchar.2022.111980
|
74 |
Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution [J]. J. Mater. Res., 2018, 33: 2752
doi: 10.1557/jmr.2018.224
|
75 |
Niu X M, Shen H Y, Fu J Z, et al. Effective control of microstructure evolution in AZ91D magnesium alloy by SiC nanoparticles in laser powder-bed fusion [J]. Mater. Des., 2021, 206: 109787
doi: 10.1016/j.matdes.2021.109787
|
76 |
Wang X C, Chen C J, Zhang M. Effect of heat treatment on microstructure and micro-wear resistance of selective laser melted Mg-Al-Zn alloy with La2O3 addition [J]. J. Mater. Eng. Perform., 2021, 30: 2316
doi: 10.1007/s11665-021-05516-7
|
77 |
Wits W W, Smit M D, Al-Hamdani K, et al. Laser powder bed fusion of a magnesium-SiC metal matrix composite [J]. Proced. CIRP, 2019, 81: 506
|
78 |
Wang C M, Shuai Y, Yang Y W, et al. Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion [J]. J. Alloys Compd., 2022, 897: 163247
doi: 10.1016/j.jallcom.2021.163247
|
79 |
Deng Q C, Wu Y J, Luo Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting [J]. Mater. Charact., 2020, 165: 110377
doi: 10.1016/j.matchar.2020.110377
|
80 |
Deng Q C, Wu Y J, Su N, et al. Influence of friction stir processing and aging heat treatment on microstructure and mechanical properties of selective laser melted Mg-Gd-Zr alloy [J]. Addit. Manuf., 2021, 44: 102036
|
81 |
Fu P H, Wang N Q, Liao H G, et al. Microstructure and mechanical properties of high strength Mg-15Gd-1Zn-0. 4Zr alloy additive-manufactured by selective laser melting process [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1969
doi: 10.1016/S1003-6326(21)65630-3
|
82 |
Deng Q C, Wu Y J, Zhu W X, et al. Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Mg-11Gd-2Zn-0.4Zr alloy [J]. Mater. Sci. Eng., 2022, A829: 142139
|
83 |
Deng Q C, Wang X C, Lan Q, et al. Limitations of linear energy density for laser powder bed fusion of Mg-15Gd-1Zn-0.4Zr alloy [J]. Mater. Charact., 2022, 190: 112071
doi: 10.1016/j.matchar.2022.112071
|
84 |
Deng Q C, Zhang Y, Liu Z Y, et al. Laser powder bed fusion of an age-hardenable Mg-10Gd-0.2Zr alloy with excellent strength-ductility synergy [J]. J. Alloys Compd., 2022, 910: 164863
doi: 10.1016/j.jallcom.2022.164863
|
85 |
Wang Y C, Fu P H, Wang N Q, et al. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants [J]. Engineering, 2020, 6: 1267
doi: 10.1016/j.eng.2020.02.015
|
86 |
Xie K, Wang N Q, Guo Y, et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study [J]. Bioact. Mater., 2022, 8: 140
|
87 |
Zheng Y F, Xia D D, Shen Y N, et al. Additively manufactured biodegrabable metal implants [J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
|
郑玉峰, 夏丹丹, 谌雨农 等. 增材制造可降解金属医用植入物 [J]. 金属学报, 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
88 |
Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging [J]. Science, 2019, 363: 849
doi: 10.1126/science.aav4687
pmid: 30792298
|
89 |
Zhao C, Parab N D, Li X X, et al. Critical instability at moving keyhole tip generates porosity in laser melting [J]. Science, 2020, 370: 1080
doi: 10.1126/science.abd1587
pmid: 33243887
|
90 |
Wang L, Zhang Y M, Chia H Y, et al. Mechanism of keyhole pore formation in metal additive manufacturing [J]. npj Comput. Mater., 2022, 8: 22
doi: 10.1038/s41524-022-00699-6
|
91 |
Kou S. Solidification and liquation cracking issues in welding [J]. JOM, 2003, 55(6): 37
|
92 |
Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2006, 12: 254
doi: 10.1108/13552540610707013
|
93 |
Roehling J D, Smith W L, Roehling T T, et al. Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing [J]. Addit. Manuf., 2019, 28: 228
doi: 10.1016/j.addma.2019.05.009
|
94 |
Chen C P, Xiao Z X, Wang Y L, et al. Prediction study on in-situ reduction of thermal stress using combined laser beams in laser powder bed fusion [J]. Addit. Manuf., 2021, 47: 102221
|
95 |
Kalentics N, Sohrabi N, Tabasi H G, et al. Healing cracks in selective laser melting by 3D laser shock peening [J]. Addit. Manuf., 2019, 30: 100881
|
96 |
Salehi M, Maleksaeedi S, Farnoush H, et al. An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium [J]. Powder Technol., 2018, 333: 252
doi: 10.1016/j.powtec.2018.04.026
|
97 |
Wen P, Qin Y, Chen Y Z, et al. Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification [J]. J. Mater. Sci. Technol., 2019, 35: 368
doi: 10.1016/j.jmst.2018.09.065
|
98 |
Rong W, Wu Y J, Zhang Y, et al. Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt.%) alloy [J]. Mater. Charact., 2017, 126: 1
doi: 10.1016/j.matchar.2017.02.010
|
99 |
Ozaki T, Kuroki Y, Yamada K, et al. Mechanical properties of newly developed age hardenable Mg-3.2 mol%Gd-0.5 mol%Zn casting alloy [J]. Mater. Trans., 2008, 49: 2185
doi: 10.2320/matertrans.L-MRA2008830
|
100 |
Li J C, He Z L, Fu P H, et al. Heat treatment and mechanical properties of a high-strength cast Mg-Gd-Zn alloy [J]. Mater. Sci. Eng., 2016, A651: 745
|
101 |
Zhang J H, Leng Z, Liu S J, et al. Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults [J]. J. Alloys Compd., 2011, 509: 7717
doi: 10.1016/j.jallcom.2011.04.089
|
102 |
Zhang Y, Wu Y J, Peng L M, et al. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6Gd-1.8Ag-0.4Zr alloy [J]. J. Alloys Compd., 2014, 615: 703
doi: 10.1016/j.jallcom.2014.07.028
|
103 |
Wang Q D, Chen J, Zhao Z, et al. Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy [J]. Mater. Sci. Eng., 2010, A528: 323
|
104 |
Macías J G S, Elangeswaran C, Zhao L, et al. Ductilisation and fatigue life enhancement of selective laser melted AlSi10Mg by friction stir processing [J]. Scr. Mater., 2019, 170: 124
doi: 10.1016/j.scriptamat.2019.05.044
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|