Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (6): 760-769    DOI: 10.11900/0412.1961.2022.00269
Research paper Current Issue | Archive | Adv Search |
Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers
XIE Liwen1,2, ZHANG Lilong3, LIU Yanyan1, ZHANG Mingyang1, WANG Shaogang4, JIAO Da1, LIU Zengqian1(), ZHANG Zhefeng1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
3 State Key Laboratory of Light Alloy Foundry Technology for High-End Equipment, Shenyang Research Institute of Foundry Co. Ltd., Shenyang 110022, China
4 Shenyang National Laboratory for Material Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

XIE Liwen, ZHANG Lilong, LIU Yanyan, ZHANG Mingyang, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers. Acta Metall Sin, 2024, 60(6): 760-769.

Download:  HTML  PDF(3804KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg and Mg-based alloys are distinguished by their high specific strength-to-density ratios but demonstrate low strengths at ambient to elevated temperatures. Producing Mg-based composites offers an effective means of strengthening Mg. Nevertheless, the mechanical properties of Mg-based composites are primarily dependent on their architectures. Here, bioinspired Mg-based composites with fish-scale-like orthogonal plywood and double-twisted Bouligand-type (i.e., double-Bouligand) architectures were fabricated by the pressureless infiltration of an Mg melt into the woven contextures of stainless steel fibers. The phase constitution, microstructure, and tensile properties of the composites at room temperature and 200oC were compared with a composite where stainless steel fibers were randomly oriented in-plane. The relationships between the microstructure and mechanical properties were also explored. The results showed that the stainless steel fibers played a notable role in strengthening the composites and were pulled out from the Mg matrix to promote plastic deformation and energy consumption. The mechanical properties of the composites were closely associated with their microstructures, with fish-scale-like architectures displaying higher strengths and larger plasticity than the randomly oriented ones. In particular, the double-Bouligand architecture allowed coordinated deformation between the fibers of different orientations and promoted crack deflection along the fibers, thereby alleviating the localization of deformation and damage in the composite. Therefore, it bestowed larger plasticity at room temperature and higher tensile strength at high temperature. By exploiting new bioinspired architectures, this study provides guidance for optimizing the architectural design of Mg-based composites to improve their mechanical properties.

Key words:  Mg-based composites      fish-scale-like architecture      bioinspired design      stainless steel fiber      mechanical property     
Received:  31 May 2022     
ZTFLH:  TB331  
Fund: National Key Research and Development Program of China(2020YFA0710404);National Natural Science Foundation of China(52173269;51871216;52101160);Youth Innovation Promotion Association of Chinese Academy of Sciences(2019191)
Corresponding Authors:  LIU Zengqian, professor, Tel: (024)83970116, E-mail: zengqianliu@imr.ac.cn;
ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00269     OR     https://www.ams.org.cn/EN/Y2024/V60/I6/760

Fig.1  Microstructure of the stainless steel mesh
Fig.2  Schematics of the spatial arrangement of stainless steel fibers in three-dimensional space in the Mg-based composites with random stacking (a), orthogonal plywood (b), and double-Bouligand (c) architectures
Fig.3  SEM images of the through-thickness cross-sections of the Mg-based composites with random stacking (a), orthogonal plywood (b), and double-Bouligand (c) architectures (Light gray: stainless steel fiber; dark gray: Mg matrix)
Fig.4  XRT volume renderings of the spatial arrangement of the stainless steel fibers in the Mg-based composites with random stacking (a), orthogonal plywood (b), and double-Bouligand (c) architectures
Fig.5  XRD spectrum (a), SEM image (b), and corresponding area distributions of elements Mg (c), Fe (d), and Cr (e) measured by EDS of the Mg-based composites by taking the orthogonal plywood architecture as an example
Fig.6  Representative tensile engineering stress-strain curves of the Mg-based composites with different architectures at room temperature (a) and 200oC (b) compared to pure Mg
Fig.7  Low (a-c) and high (d-f) magnified fracture morphologies of the Mg-based composites with random stacking (a, d), orthogonal plywood (b, e), and double-Bouligand (c, f) architectures after tensile testing at room temperature
Fig.8  Low (a-c) and high (d-f) magnified fracture morphologies of the Mg-based composites with random stacking (a, d), orthogonal plywood (b, e), and double-Bouligand (c, f) architectures after tensile testing at 200oC
1 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
2 Mordike B L, Ebert T. Magnesium: Properties-applications-Potential [J]. Mater. Sci. Eng., 2001, A302: 37
3 Pollock T M. Weight loss with magnesium alloys [J]. Science, 2010, 328: 986
doi: 10.1126/science.1182848 pmid: 20489013
4 Tian Y, Wu P P, Xiao L, et al. Technological advances in fabrication of magnesium matrix composites [J]. Mater. Rev., 2016, 30(19): 32
田 莹, 吴萍萍, 肖 旅 等. 镁基复合材料的制备技术进展 [J]. 材料导报, 2016, 30(19): 32
5 Li D J, Zeng X Q, Dong J, et al. Microstructure evolution of Mg-10Gd-3Y-1.2Zn-0.4Zr alloy during heat-treatment at 773 K [J]. J. Alloys Compd., 2009, 468: 164
6 Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
7 Gu R C, Zhang J, Zhang M Y, et al. Fabrication of Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture and their mechanical properties [J]. Acta Metall. Sin., 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
谷瑞成, 张 健, 张明阳 等. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 [J]. 金属学报, 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
8 Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng., 2001, A298: 193
9 Wang X J, Xu D K, Wu R Z, et al. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34: 245
doi: 10.1016/j.jmst.2017.07.019
10 Wang S G, Xu J. Strengthening and toughening of Mg-based bulk metallic glass via in-situ formed B2-type AgMg phase [J]. J. Non-Cryst. Solids, 2013, 379: 40
11 Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
12 Habibi M K, Joshi S P, Gupta M. Hierarchical magnesium nano-composites for enhanced mechanical response [J]. Acta Mater., 2010, 58: 6104
13 Habibnejad-Korayem M, Mahmudi R, Poole W J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles [J]. Mater. Sci. Eng., 2009, A519: 198
14 Li D J, Wang Q D, Blandin J J, et al. High temperature compressive deformation behavior of an extruded Mg-8Gd-3Y-0.5Zr (wt. %) alloy [J]. Mater. Sci. Eng., 2009, A526: 150
15 Wang L Q, Ren Y P, Sun S N, et al. Microstructure, mechanical properties and fracture behavior of as-extruded Zn-Mg binary alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 931
16 Luo A. Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites [J]. Metall. Mater. Trans., 1995, 26A: 2445
17 Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. Int. Mater. Rev., 1994, 39: 1
18 Mayer G. Rigid biological systems as models for synthetic composites [J]. Science, 2005, 310: 1144
pmid: 16293751
19 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322: 1516
doi: 10.1126/science.1164865 pmid: 19056979
20 Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
21 Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Prog. Mater. Sci., 2017, 88: 467
22 Dastjerdi A K, Barthelat F. Teleost fish scales amongst the toughest collagenous materials [J]. J. Mech. Behav. Biomed. Mater., 2015, 52: 95
doi: S1751-6161(14)00309-9 pmid: 25457170
23 Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nat. Commun., 2013, 4: 2634
doi: 10.1038/ncomms3634 pmid: 24129554
24 Suksangpanya N, Yaraghi N A, Kisailus D, et al. Twisting cracks in Bouligand structures [J]. J. Mech. Behav. Biomed. Mater., 2017, 76: 38
doi: S1751-6161(17)30247-3 pmid: 28629739
25 Ikoma T, Kobayashi H, Tanaka J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major [J]. J. Struct. Biol., 2003, 142: 327
26 Suksangpanya N, Yaraghi N A, Pipes R B, et al. Crack twisting and toughening strategies in Bouligand architectures [J]. Int. J. Solids Struct., 2018, 150: 83
27 Quan H C, Yang W, Schaible E, et al. Novel defense mechanisms in the armor of the scales of the “living fossil” Coelacanth fish [J]. Adv. Funct. Mater., 2018, 28: 1804237
28 Yin S, Yang W, Kwon J, et al. Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials [J]. J. Mech. Phys. Solids, 2019, 131: 204
29 Yang F, Xie W H, Meng S H. Analysis and simulation of fracture behavior in naturally occurring Bouligand structures [J]. Acta Biomater., 2021, 135: 473
30 Song Z Q, Ni Y, Cai S Q. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure [J]. Acta Biomater., 2019, 91: 284
doi: S1742-7061(19)30290-9 pmid: 31028909
31 Quan H C, Yang W, Lapeyriere M, et al. Structure and mechanical adaptability of a modern elasmoid fish scale from the common carp [J]. Matter, 2020, 3: 842
32 Chen S M, Gao H L, Zhu Y B, et al. Biomimetic twisted plywood structural materials [J]. Natl. Sci. Rev., 2018, 5: 703
33 Huang W, Restrepo D, Jung J Y, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs [J]. Adv. Mater., 2019, 31: 1901561
34 Grunenfelder L K, Suksangpanya N, Salinas C, et al. Bio-inspired impact-resistant composites [J]. Acta Biomater., 2014, 10: 3997
doi: 10.1016/j.actbio.2014.03.022 pmid: 24681369
35 Zhang Y, Tan G Q, Zhang M Y, et al. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96: 21
doi: 10.1016/j.jmst.2021.04.022
36 Liu Y Y, Yu Q, Tan G Q, et al. Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from Nature [J]. J. Magnes. Alloy., 2023, 11: 869
37 Zhang M Y, Zhao N, Yu Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures [J]. Nat. Commun., 2022, 13: 3247
doi: 10.1038/s41467-022-30873-9 pmid: 35668100
38 Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
39 Hufenbach W, Ullrich H, Gude M, et al. Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires [J]. Arch. Civ. Mech. Eng., 2012, 12: 265
40 Li Q Y, Li J, He G. Compressive properties and damping capacities of magnesium reinforced with continuous steel wire [J]. Mater. Sci. Eng., 2017, A680: 92
41 Wu S X, Wang S R, Wen D S, et al. Microstructure and mechanical properties of magnesium matrix composites interpenetrated by different reinforcement [J]. Appl. Sci., 2018, 8: 2012
42 Bowman R R, Misra A K, Arnold S M. Processing and mechanical properties of Al2O3 fiber-reinforced NiAl composites [J]. Metall. Mater. Trans., 1995, 26A: 615
43 Lin Z, Li V C. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces [J]. J. Mech. Phys. Solids, 1997, 45: 763
44 Liu Z Q, Zhang Y Y, Zhang M Y, et al. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials [J]. Acta Biomater., 2019, 86: 96
doi: S1742-7061(19)30030-3 pmid: 30639350
45 Hassan S F, Gupta M. Development of ductile magnesium composite materials using titanium as reinforcement [J]. J. Alloys Compd., 2002, 345: 246
[1] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
[2] WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. 金属学报, 2024, 60(5): 616-626.
[3] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[4] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[5] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[6] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[7] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[8] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[9] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
[10] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[11] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[12] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[13] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[14] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[15] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
No Suggested Reading articles found!