Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (6): 743-759    DOI: 10.11900/0412.1961.2023.00393
Overview Current Issue | Archive | Adv Search |
Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys
WANG Feng1,2,3(), BAI Shengwei1,2, WANG Zhi1,2, DU Xudong1,2(), ZHOU Le1,2, MAO Pingli1,2, WEI Ziqi1,2, LI Jinwei3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, Shenyang University of Technology, Shenyang 110870, China
3 Liaoning Automobile Lightweight Technology Professional Innovation Center, Liaoning Dide Technology Co. Ltd., Tieling 112611, China
Cite this article: 

WANG Feng, BAI Shengwei, WANG Zhi, DU Xudong, ZHOU Le, MAO Pingli, WEI Ziqi, LI Jinwei. Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys. Acta Metall Sin, 2024, 60(6): 743-759.

Download:  HTML  PDF(2403KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Zn series alloys, an important alloy system among magnesium alloys, have garnered considerable attention due to their rich phase composition, outstanding deformability, and aging strengthening effects. These alloys demonstrate great potential for applications in the aerospace, automotive, and biomedical industries. However, the wide solidification temperature range and large shrinkage of these alloys render them largely susceptible to hot tearing, limiting their applications to a certain extent. Thus, investigating the hot tearing behavior of Mg-Zn series alloys is important. In this paper, a comprehensive summary of theories pertaining to hot tearing, the effects of alloying elements and casting process parameters on the susceptibility of Mg-Zn series alloys to hot tearing, and the current status of research on the numerical simulation of this phenomenon are presented. Furthermore, this article discusses the influence of microstructure and solidification parameters of Mg-Zn series alloys on their hot tearing susceptibility and proposes limitations and suggestions for the current research on the hot tearing behavior of magnesium alloys to guide the design and application of Mg-Zn series alloys.

Key words:  Mg-Zn series alloys      hot tearing susceptibility      microstructure      processing parameter     
Received:  19 September 2023     
ZTFLH:  TG146.2  
Fund: Basic Scientific Research Project of Liaoning Provincial Department of Education (Key Research Project)(JYTZD2023108);High Level Innovation Team of Liaoning Province(XLYC-1908006);Liaoning Nature Fund Guidance Plan(2022-BS-179);General Project of Liaoning Provincial Department of Education(LJKMZ20220462)
Corresponding Authors:  WANG Feng, professor, Tel: 15002424621, E-mail: wf9709@126.com;
DU Xudong, Tel: 13940206929, E-mail: dxd9297@126.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00393     OR     https://www.ams.org.cn/EN/Y2024/V60/I6/743

Fig.1  Important parameters and stages in the solidification process of alloys[10] (TL—liquidus temperature; T—current temperature of the melt, T0.4, T0.9, T0.99—the corresponding temperatures when the solid fraction is 40%, 90%, and 99%, repectively; TS—solidus temperature)
ElementMaximum solid solutionMain secondary phase formed by
Mass fraction / %Atomic fraction / %alloying element in Mg-Zn alloy
Y12.5[27]3.75[35]

I (Mg3Zn6Y), W (Mg3Zn3Y2),

LPSO (Mg12YZn)

Nd~3[28]~1[35]Mg12Nd, T-phase ((MgZn)92Nd8)
Gd23.5[29]4.53[35]W (Mg3Zn3Gd2), I (Mg3Zn6Gd)
Al12.7[30]11.8[35]Mg17Al12
Zr3.8[31]1.0[36]-
Ca1.35[32]0.82[35]Ca2Mg6Zn3
Cu0.013[33]-MgZnCu
Zn6.2[34]2.4[35]MgZn, MgZn2, Mg7Zn3
Sn14.5[26]3.35[26]MgZnSn
Table 1  Maximum solid solution of common alloying elements in magnesium[26-36]

Alloy

mass fraction / %

Alloy with peak HTS mass fraction / %

Alloy with valley HTS

mass fraction / %

Processing parameter
Tmold / oCTpour / oC
Mg-1.5Zn-xY (x = 0.2, 2, 4)[37]Mg-1.5Zn-0.2YMg-1.5Zn-4Y250750

Mg-4.5Zn-xY (x = 0, 0.4, 0.9, 2)[38]

Mg-4.5Zn-0.4Y

Mg-4.5Zn-0.9Y

Mg-4.5Zn-2Y250750
Mg-4.5Zn-0.9Y

Mg-4.5Zn,

Mg-4.5Zn-2Y

450750
Mg-xZn-2xY (x = 1, 1.67, 2.67)[39]Mg-1.67Zn-3.34YMg-2.67Zn-5.34Y250720
Mg-4.5Zn-xY-0.5Zr (x = 0.5, 1, 2, 4, 6)[40]Mg-4.5Zn-1Y-0.5ZrMg-4.5Zn-6Y-0.5Zr200720
Mg-1Zn-xY (x = 1, 1.33, 2)[41]Mg-1Zn-1YMg-1Zn-1.33Y250750
Mg-1Zn-xY (x = 1, 2, 3)[42]Mg-1Zn-1YMg-1Zn-3Y250750
Mg-6.5Zn-xY-0.5Zr (x = 1, 2, 4, 6)[43]Mg-6.5Zn-6Y-0.5ZrMg-6.5Zn-2Y-0.5Zr200720

Mg-5(Zn + Y)-0.5Zr (Mg-2.5Zn-2.5Y-0.5Zr,

Mg-3Zn-2Y-0.5Zr, Mg-3.75Zn-1.25Y-0.5Zr,

Mg-4.29Zn-0.71Y-0.5Zr)[44]

Mg-3.75Zn-1.25Y-0.5Zr

Mg-2.5Zn-2.5Y-0.5Zr

200

700

Mg-xZn-0.5Y-0.5Zr (x = 1.5, 2.5, 3.5, 4.5)[45]Mg-1.5Zn-0.5Y-0.5ZrMg-4.5Zn-0.5Y-0.5Zr280700
Mg-xZn-2Y (x = 0, 0.5, 1.5, 4.5)[46]Mg-1.5Zn-2YMg-2Y250750
Mg-xZn-4Y-0.5Zr (x = 0, 0.5, 1.5, 3)[47]Mg-1.5Zn-4Y-0.5ZrMg-4Y-0.5Zr200720
Table 2  Hot tearing susceptibility (HTS) results of Mg-Zn-Y series alloys[37-47]

Alloy

mass fraction / %

Alloy with peak HTS mass fraction / %Alloy with valley HTS mass fraction / %Processing parameter
Tmold / oCTpour / oC
Mg-6Zn-xCu-0.6Zr (x = 0, 0.5, 1, 2, 3)[66]Mg-6Zn-0.6ZrMg-6Zn-3Cu-0.6Zr250750
Mg-7Zn-xCu-0.6Zr (x = 0, 1, 2, 3)[67]Mg-7Zn-0.6ZrMg-7Zn-3Cu-0.6Zr250700
Table 3  HTS results of Mg-Zn-Cu series alloys[66,67]

Alloy mass fraction / %

Alloy with peak HTS

mass fraction / %

Alloy with valley HTS

mass fraction / %

Processing parameter
Tmold / oCTpour / oC
Mg-xZn-0.5Ca (x = 0, 2, 4, 6)[61]-Mg-6Zn-0.5Ca250750
Mg-4Zn-0.5CaMg-0.5Ca450750
Mg-xZn-2Ca (x = 0, 0.5, 1.5, 4, 6)[70]

Mg-0.5Zn-2Ca,

Mg-1.5Zn-2Ca

Mg-6Zn-2Ca250750
Mg-1.5Zn-2Ca

Mg-2Ca,

Mg-6Zn-2Ca

450750
Mg-1.5Zn-xCa (x =1, 2, 3, 4)[71]Mg-1.5Zn-1CaMg-1.5Zn-4Ca200720
Mg-4Zn-xCa-0.3Zr (x = 0.5, 1,1.5, 2)[72]Mg-4Zn-0.5Ca-0.3ZrMg-4Zn-1.5Ca-0.3Zr270700
Table 4  HTS results of Mg-Zn-Ca series alloys[61,70-72]

Alloy mass fraction / %

Secondary phase in alloy

Most effective secondary phase reducing the HTS of the alloy

Mg-4.5Zn-xY-yNd (x + y = 6, x = 0, 1, 3, 6)[79]

I (Mg3Zn6Y, Mg3Zn6(Y, Nd)),

W (Mg3Zn3Y2, Mg3Zn3(Y, Nd)2),

T ((MgZn)92Nd8)

W (Mg3Zn3(Y, Nd)2)

Mg-xZn-7Gd-5Y-0.5Zr (x = 0, 3, 7, 13)[80]

Mg5(Gd, Y),

LPSO (Mg12Zn(Gd, Y)),

W (Mg3Zn3(Gd,Y)2),

I (Mg3Zn6(Gd,Y))

Mg3Zn3(Gd, Y)2

Mg-6Zn-1Cu-xY-0.6Zr (x = 0, 1, 2, 3)[81]

MgZnCu, I (Mg3YZn6), MgZn2,

W (Mg3Y2Zn3, Mg3(Zn, Cu)3Y2)

W (Mg3(Zn, Cu)3Y2)
Mg-4Zn-xSn-1Ca (x = 0, 0.5, 1, 2)[83]CaMgSn, Ca2Mg6Zn3Ca2Mg6Zn3
Mg-0.5Zn-4Al-(0.5%-2.0%)Ca-(0.5%-2.0%)La[85]Al11La3, Al2CaAl2Ca

Mg-2Zn-(3 + 0.5x)Y-xAl (x = 0, 2, 3; atomic fraction, %)[86],

Mg-2Zn-3Y-xAl (x = 0, 0.5, 1, 2)[87]

Al2Y + Al3Y, W (Mg3Y2Zn3),

LPSO (Mg12ZnY)

Al2Y
Table 5  Secondary phases in Mg-Zn-X-Y(-Z) alloy after the addition of alloying elements and the most effective secondary phase reducing the hot tearing susceptibility of alloys[79-81,83,85-87]
Fig.2  Schematic of “T”-shaped hot tearing test system with magnetic field[96]
Fig.3  SEM images of hot tears (a-c) and microstructure morphologies (d, e)[95], and schematics of feeding (f, g)[96] in Mg-4Zn-1.5Ca alloy under natural solidification (a, d, f) and low-frequency alternating magnetic fields (LAMF) (b, c, e, g)
Fig.4  Schematics of the MgZnCu phase agglomeration and spheroidization under LAMF (a-d, f) and SEM images of MgZnCu phase (e, g, h)[94]
Fig.5  Macroscopic photos of hot tearing and results of numerical simulation for Mg-1Zn-xY alloy[42] (a-f) and Mg-xZn-2Y alloys[46] (g-n)
PhaseConditionEffect
High melting point eutectic phaseLow volume

Increasing the non-uniform nucleation site;

refining the grains;

increasing the content of the liquid film subjected to shrinkage stress/strain;
reducing the HTS of the alloy
High volumeBlocking the feeding channel;
reducing the feeding efficiency of alloy at the end of solidification;
increasing the HTS of the alloy

Low melting point eutectic phase

Thci < TLMPE

Liquid film theory and intergranular bridging theory:

The low melting eutectic phase precipitated before hot tearing initiation acts as “bridges” to fix the grain boundary on both sides. Under the action of surface tension and bridge, the intergranular bonding force improved

ThciTLMPE

Liquid film theory:

The intergranular binding force is only provided by the surface tension of the liquid film covering the dendrite surface

Table 6  Mechanism of the secondary phase species on hot tearing behavior of magnesium alloys
Fig.6  Solidification temperature range and hot tearing susceptibility of several different alloys
(a) Mg-4Zn-1.5Ca alloy under different strengthes of LAMF[95]
(b) Mg-5(Zn + Y)-0.5Zr alloys (CSC—crack sus-ceptibility coefficient; A: Mg-2.5Zn-2.5Y-0.5Zr alloy, B: Mg-3Zn-2Y-0.5Zr alloy, C: Mg-3.75Zn-1.25Y-0.5Zr alloy, D: Mg-4.29Zn-0.71Y-0.5Zr alloy)[44]
(c) Mg-xZn-4Y-0.5Zr alloy[47]
Fig.7  Effects of Y[43], Al[76], and Ca[72] elements on the solidification temperature interval and HTS of Mg-Zn binary alloy (Tmax, Tmin—the largest and the lowest solidification temperature ranges in the investigated alloys, respectively)
Fig.8  Schematics of alloy solidification process (fs—solid fraction, fscoh—solid fraction when dendrite coherency, Tcoh—temperature when dendrite coherency)
(a) the condition of fs is low when dendrite coherency
(b) the condition of fs is high when dendrite coherency
1 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
2 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
3 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
4 Bassan M, Buonomo B, Cavallari G, et al. Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures [J]. Int. J. Mod. Phys., 2013, 27B: 1350119
5 Mao P L, Wang F, Liu Z, Thermodynamics and Phase Diagrams of Magnesium Alloys [M]. Beijing: China Machine Press, 2015: 24
毛萍莉, 王 峰, 刘 正. 镁合金热力学及相图 [M]. 北京: 机械工业出版社, 2015: 24
6 Eskin D G, Katgerman L, Suyitno, et al. Contraction of aluminum alloys during and after solidification [J]. Metall. Mater. Trans., 2004, 35A: 1325
7 Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundryman, 1981, 74(4): 65
8 Zhou L. Investigations on hot tearing susceptibility and mechanism for Mg-Zn-(Al) alloys [D]. Shenyang: Shenyang University of Technology, 2011
周 乐. Mg-Zn-(Al)系合金热裂敏感性及其微观机理研究 [D]. 沈阳: 沈阳工业大学, 2011
9 Ramon J, Basu R, Voort G V, et al. A comprehensive study on solidification (hot) cracking in austenitic stainless steel welds from a microstructural approach [J]. Int. J. Pressure Vessels Pip., 2021, 194: 104560
10 Du X D. Solidification behavior and hot tearing mechanism of Mg-Al-Ca series alloys [D]. Shenyang: Shenyang University of Technology, 2023
杜旭东. Mg-Al-Ca系合金凝固行为及热裂机理研究 [D]. 沈阳: 沈阳工业大学, 2023
11 Vero J. The hot-shortness of aluminium alloys [J]. Met. Ind., 1936, 48: 431, 442
12 Singer A R E, Cottrell S A. Properties of the Al-Si Alloys at temperatures in the region of the solidus [J]. J. Inst. Met., 1946, 73: 33
13 Zhu Q. Study on the relationship between mushy zone strength and hot cracking of Mg-Zn based magnesium alloys [D]. Shenyang: Northeastern University, 2016
朱 强. Mg-Zn基镁合金的糊状区强度和热裂的关系研究 [D]. 沈阳: 东北大学, 2016
14 Sigworth G K. Hot tearing of metals [J]. Trans. Am. Foundrymen's Soc., 1996, 104: 1053
15 Wray P J. The geometry of two-phase aggregates in which the shape of the second phase is determined by its dihedral angle [J]. Acta Metall., 1976, 24: 125
16 Saveiko V N. Theory of hot tearing [J]. Russ. Cast. Prod., 1961, 11: 453
17 Campbell J. Castings [M]. 2nd Ed., Oxford: Butterworth-Heinemann, 2003: 253
18 Wang Y S, Wang Q D, Ding W J, et al. Research development of hot tear mechanism for cast alloys [J]. Special Cast. Nonferrous Alloys, 2000, 12(2): 48
王业双, 王渠东, 丁文江 等. 合金的热裂机理及其研究进展 [J]. 特种铸造及有色合金, 2000, 12(2): 48
19 Pellini W S. Strain theory of hot tearing [J]. Foundry, 1952, 80: 125
20 Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting [J]. Metall. Trans., 1982, 13B: 259
21 Clyne T W, Davies G J. Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition [A]. Procedings of the Conference on Solidification and Casting of Metals [M]. London: Metals Society, 1979: 274
22 Zhang S B. Investigations on testing methods and hot tearing susceptibility on Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
23 Li X X, Liu S M, Liu Z, et al. Influence of Nd on hot tearing susceptibility and mechanism of Mg-Zn-Y-Zr alloys [J]. J. Mater. Eng. Perform., 2020, 29: 6714
24 Ding H, Fu H Z, Liu Z Y, et al. Compensation of Solidification contraction and hot cracking tendency of alloys [J]. Acta Metall. Sin., 1997, 33: 921
丁 浩, 傅恒志, 刘忠元 等. 凝固收缩补偿与合金的热裂倾向 [J]. 金属学报, 1997, 33: 921
25 M'hamdi M, Mo A, Martin C L. Two-phase modeling directed toward hot tearing formation in aluminum direct chill casting [J]. Metall. Mater. Trans., 2002, 33A: 2081
26 Liu Z, Zhang K, Zeng X Q. Theoretical Basis and Application of Magnesium-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 26
刘 正, 张 奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 26
27 Zhao Z Y. The application of RE-containing magnesium casting alloys in aviation industry in China [J]. J. Mater. Eng., 1993, (7): 8
赵志远. 铸造稀土镁合金在我国航空工业中的应用 [J]. 材料工程, 1993, (7): 8
28 Liu X, Zhang Z Q, Le Q C, et al. Effects of Nd/Gd value on the microstructures and mechanical properties of Mg-Gd-Y-Nd-Zr alloys [J]. J. Magnes. Alloy., 2016, 4: 214
29 Luo S F, Yang G Y, Qin H, et al. Substitution effects of Gd with Nd on microstructures and mechanical properties of Mg-10Gd-0.4Zr alloys [J]. Adv. Eng. Mater., 2020, 22: 1901576
30 Luo A A. Recent magnesium alloy development for elevated temperature applications [J]. Int. Mater. Rev., 2004, 49: 13
31 Zhang W Y. Study progress of magnesium alloy and its working technology [J]. Mater. China, 2007, 26(8): 15
张文毓. 镁合金及其加工技术研究进展 [J]. 稀有金属快报, 2007, 26(8): 15
32 Shi L, Li J W, Guan R G, et al. Effects of Mn and Ca elements on the microstructures of magnesium alloys [J]. Non-Ferr. Min. Metall., 2008, 24(1): 23, 55
石 路, 李江委, 管仁国 等. Ca、Mn对镁合金凝固组织的影响 [J]. 有色矿冶, 2008, 24(1): 23, 55
33 Zhang W P, Ma M L, Zhang K, et al. Microstructures and properties of Mg-2Zn alloys with different Cu contents [J]. Chin. J. Rare Met., 2020, 44: 113
张万鹏, 马鸣龙, 张 奎 等. Cu含量对Mg-2Zn合金组织及性能影响研究 [J]. 稀有金属, 2020, 44: 113
34 Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
35 Jiang S Y, Yuan Y, Chen T, et al. Research progress on corrosion resistance of magnesium alloys in aspect of element solid-solution and precipitation [J]. J. Mater. Eng., 2021, 49(12): 40
蒋诗语, 袁 媛, 陈 涛 等. 元素固溶与析出对镁合金耐蚀性影响的研究进展 [J]. 材料工程, 2021, 49(12): 40
doi: 10.11868/j.issn.1001-4381.2021.000286
36 Huang X F, Zhu K, Cao X J, et al. The roles of alloying elements in magnesium alloys [J]. Found. Technol., 2008, 29: 1574
黄晓锋, 朱 凯, 曹喜娟. 主要合金元素在镁合金中的作用 [J]. 铸造技术, 2008, 29: 1574
37 Wang Z, Huang Y D, Srinivasan A, et al. Influences of Y additions on the hot tearing susceptibility of Mg-1.5wt.%Zn alloys [J]. Met. Sci. Forum, 2013, 765: 306
38 Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
39 Wei Z Q, Wang Y, Liu Z. Effects of Zn and Y on hot-tearing susceptibility of Mg-xZn-2xY alloys [J]. Mater. Sci. Technol., 2018, 34: 2001
40 Feng Y, Mao P L, Liu Z, et al. Effect of yttrium content on hot tearing susceptibility of MgZn4.5Y x Zr0.5 alloys [J]. Chin. J. Nonferrous Met., 2017, 27: 1970
冯 羽, 毛萍莉, 刘 正 等. 钇含量对MgZn4.5Y x Zr0.5合金热裂敏感性的影响 [J]. 中国有色金属学报, 2017, 27: 1970
41 Zhou Z J, Liu Z, Wang Y, et al. Effects of the second phase on hot tearing susceptibility of Mg-Zn-Y alloy [J]. Mater. Res. Express, 2018, 6: 016529
42 Zhou Y, Mao P L, Zhou L, et al. Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg-1Zn-xY alloys [J]. J. Magnes. Alloy., 2020, 8: 1176
43 Wei Z Q, Liu Z, Wang Y, et al. Hot tearing behavior and microstructure mechanism of Mg-6.5Zn-xY-0.5Zr alloys [J]. Mater. Res. Express, 2019, 6: 076570
44 Jia D R, Liu Z, Mao P L, et al. Hot tearing behavior of Mg-5(Zn + Y)-0.5Zr alloys [J]. Mater. Res. Express, 2017, 4: 106511
45 Li X X, Liu Z, Wang Y, et al. Hot tearing defects of as-cast Mg-xZn-0.5Y-0.5Zr alloys [J]. Chin. J. Rare Met., 2020, 44: 697
李星星, 刘 正, 王 越 等. 铸态镁合金Mg-xZn-0.5Y-0.5Zr热裂缺陷研究 [J]. 稀有金属, 2020, 44: 697
46 Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
47 Wang Z, Yao S, Feng Y, et al. Solidification pathways and hot tearing susceptibility of MgZn x Y4Zr0.5 alloys [J]. China Found., 2018, 15: 124
48 Wei Z Q. Effects of solidification behavior of several Mg-Zn-RE (Y, Gd) series alloys on hot tearing mechanism [D]. Shenyang: Shenyang University of Technology, 2021
魏子淇. 几种Mg-Zn-RE(Y, Gd)系合金凝固行为对热裂机制的影响 [D]. 沈阳: 沈阳工业大学, 2021
49 Liu P, Jiang H T, Cai Z X, et al. The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg-Zn alloys [J]. J. Magnes. Alloy., 2016, 4: 188
50 Li R G, Yan Y, Pan H C. Achieving a high-strength binary Mg-15Gd alloy by nano substructure with Gd segregation and nano clusters [J]. Mater. Res. Lett., 2022, 10: 682
51 Srinivasan A, Wang Z, Huang Y D, et al. Hot tearing characteristics of binary Mg-Gd alloy castings [J]. Metall. Mater. Trans., 2013, 44A: 2285
52 Luo S F, Yang G Y, Zou Z, et al. Hot tearing susceptibility of binary Mg-Gd alloy castings and influence of grain refinement [J]. Adv. Eng. Mater., 2018, 20: 1800139
53 Liu S J. Researches on the solidification characteristic and mechanical properties of Mg-Zn-Gd-based magnesium alloy [D]. Xi'an: Northwestern Polytechnical University, 2015
刘少军. Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究 [D]. 西安: 西北工业大学, 2015
54 Qin H, Yang G Y, Zheng X W, et al. Effect of Gd content on hot-tearing susceptibility of Mg-6Zn-xGd casting alloys [J]. China Found., 2022, 19: 131
55 Fu X Q, Liu S M, Zhou L, et al. Study on the coupling behavior and micro-mechanism of solidification and hot tearing of Mg-xZn-2xGd Alloys [J]. Int. J. Metalcast., 2021, 15: 1175
56 Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
57 Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium Alloys [J]. Acta Metall. Sin., 2019, 55: 389
刘耀鸿, 王朝辉, 刘 轲 等. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响 [J]. 金属学报, 2019, 55: 389
doi: 10.11900/0412.1961.2018.00399
58 Liu Y H, Wang Z H, Li S B, et al. Hot cracking behaviors of Mg-Zn-Er alloys with different Er contents [J]. Metals, 2023, 16: 3546
59 Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 1
60 Zhou Z J. Study on solidification behavior and hot tearing susceptibility of Mg-Zn-Y alloy [D]. Shenyang: Shenyang University of Technology, 2019
周子荐. Mg-Zn-Y合金凝固行为及热裂敏感性研究 [D]. 沈阳: 沈阳工业大学, 2019
61 Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
62 Chen X H, Liu L Z, Pan F S, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys [J]. Mater. Sci. Eng., 2015, B197: 67
63 Zhang W P. Effect of Cu element on microstructure and thermalphysical properties of Mg-Zn alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2018
张万鹏. Cu元素对Mg-Zn系合金显微组织及热物性能影响研究 [D]. 北京: 北京有色金属研究总院, 2018
64 Zhu H M, Luo C P, Liu J W, et al. Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60 [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 605
65 Hu Y B, Yao Q S, Zhu C, et al. Effects of mass ratio of zinc/copper on microstructure and properties of extruded Mg-Zn-Cu-Ce alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1668
胡耀波, 姚青山, 朱 灿 等. Zn/Cu质量比对挤压态Mg-Zn-Cu-Ce合金组织和性能的影响 [J]. 稀有金属材料与工程, 2017, 46: 1668
66 Wang Z, Li Y Z, Wang F, et al. Effect of Cu additions on microstructure, mechanical properties and hot-tearing susceptibility of Mg-6Zn-0.6Zr alloys [J]. J. Mater. Eng. Perform., 2016, 25: 5530
67 Wang Z, Zhou Y, Li Y Z, et al. Hot tearing behaviors and in-situ thermal analysis of Mg-7Zn-xCu-0.6Zr alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1504
68 Zhang B P, Wang Y, Geng L. Research on Mg-Zn-Ca alloy as degradable biomaterial [A]. Biomaterials—Physics and Chemistry [M], 2011: 183
69 Cao L F, Du W B, Su X K, et al. Role of calcium alloying in magnesium alloys [J]. Found. Technol., 2006, 27: 182
曹林锋, 杜文博, 苏学宽 等. Ca合金化在镁合金中的作用 [J]. 铸造技术, 2006, 27: 182
70 Song J F, Wang Z, Huang Y D, et al. Hot tearing characteristics of Mg-2Ca-xZn alloys [J]. J. Mater. Sci., 2016, 51: 2687
71 Liu Z, Zhang Y, Mao P L, et al. Effect of Ca on hot tearing susceptibility of Mg-Zn alloy [J]. J. Shenyang Univ. Technol., 2013, 35: 624
刘 正, 张 越, 毛萍莉 等. Ca对Mg-Zn合金热裂敏感性的影响 [J]. 沈阳工业大学学报, 2013, 35: 624
72 Bai S W, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys [J]. Int. J. Metalcast., 2021, 15: 1298
73 Yin P, Li N F, Lei T, et al. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys [J]. J. Mater. Sci. Mater. Med., 2013, 24: 1365
74 Yang M B, Pan F S, Li Z S, et al. Alloying elements and their effects in Mg-Al based elevated temperature magnesium alloy [J]. Mater. Rep., 2005, (04): 46
杨明波, 潘复生, 李忠盛 等. Mg-Al系耐热镁合金中的合金元素及其作用 [J]. 材料导报, 2005, (04): 46
75 Yang M B, Pan F S, Yang A T, et al. Research status of Mg-Zn-Al(ZA) based elevated temperature magnesium alloy [J]. Hot Work. Technol., 2007, 36(8): 73
杨明波, 潘复生, 汤爱涛 等. Mg-Zn-Al(ZA)系耐热镁合金的研究现状 [J]. 热加工工艺, 2007, 36(8): 73
76 Vinodh G, Jafari Hodooshan H R, Li D J, et al. Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys [J]. Metall. Mater. Trans., 2020, 51A: 1897
77 Li T X, Wang F, Du X D, et al. Effect of Al content on hot tearing susceptibility of Mg-5Zn-0.6Mn-xAl-0.6Zr alloys [J/OL]. Int. J. Metalcast., 2022. (2023-06-30).
78 Li B C, Zhang J, Ye F W, et al. An approach to studying the hot tearing mechanism of alloying elements in ternary Mg-Zn-Al alloys [J]. J. Mater. Process. Technol., 2023, 317: 117980
79 Li X X, Liu Z, Wang Y, et al. Investigation on hot tearing behavior and its mechanism of Mg-4.5Zn-xY-yNd (x + y = 6, x = 0, 1, 3, 6) alloys [J]. Mater. Res. Express, 2019, 6: 106535
80 Wei Z Q, Liu S M, Liu Z, et al. Effects of Zn content on hot tearing susceptibility of Mg-Zn-Gd-Y-Zr alloys [J]. Int. J. Metalcast., 2022, 16: 1902
81 Zhu G N, Wang Z, Qiu W Y, et al. Effect of yttrium on hot tearing susceptibility of Mg-6Zn-1Cu-0.6Zr alloys [J]. Int. J. Metalcast., 2020, 14: 179
82 Zhou J, Nodooshan H R J, Li D J, et al. Microstructure and tensile properties of the Mg-6Zn-4Al-xSn die cast magnesium alloy [J]. Metals, 2019, 9: 113
83 Leng F, Wang F, Du X D, et al. Study on the hot tearing susceptibility of Mg-4Zn-xSn-1Ca alloys [J]. Int. J. Metalcast., 2022, 17: 342
84 Leng F. Study on hot tearing behavior of Mg-Zn-Sn alloys under magnetic field [D]. Shenyang: Shenyang University of Technology, 2021
冷 枫. 磁场作用下Mg-Zn-Sn合金热裂行为研究 [D]. 沈阳: 沈阳工业大学, 2021
85 Anthony A I, Suzuki A, Kamado S, et al. Optimization of Mg-Zn-Al-Ca-La alloys for the improvement of casting properties and creep resistance [J]. Mater. Sci. Forum, 2005, 488-489: 805
86 Zhang G J, Wang Y, Liu Z, et al. Influence of Al addition on solidification path and hot tearing susceptibility of Mg-2Zn-(3 + 0.5x)Y-xAl alloys [J]. J. Magnes. Alloy., 2019, 7: 272
87 Zhang G J, Liu Z, Wang Y, et al. An investigation on solidification path and hot tearing tendency of Mg-2Zn-3Y-xAl alloys [J]. Mater. Sci. Eng. Technol., 2019, 50: 1471
88 Zhang Z, Couture A, Luo A L. An investigation of the properties of Mg-Zn-Al alloys [J]. Scr. Mater., 1998, 39: 45
89 Birru A K, Benny Karunakar D. Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1783
90 Dong J, Zhao Z H, Cui J Z, et al. Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy [J]. Metall. Mater. Trans., 2004, 35A: 2487
91 Du X D, Wang F, Wang Z, et al. Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1259
92 Duan W C, Yin S Q, Liu W H, et al. Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field [J]. J. Magnes. Alloy., 2021, 9: 166
93 Zhang Z W, Le Q C, Bao L, et al. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of semi-continuous casting ZK60 magnesium alloy billets [J]. China Found., 2013, 10: 351
94 Zhou Y, Mao P L, Wang Z, et al. Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy [J]. J. Mater. Process. Technol., 2020, 282: 116679
95 Bai S W, Wang F, Du X D, et al. Effect of alternating magnetic fields on hot tearing susceptibility of Mg-4Zn-1.5Ca alloy [J]. Mater. Sci. Technol., 2023, 39: 50
96 Du X D, Wang F, Bai S W, et al. Effect of low-frequency alternating magnetic field strength on hot tearing susceptibility of AXJ530 alloy [J]. Int. J. Metalcast., 2022, 17: 2017
97 Feurer U. Influence of alloy composition and solidification conditions on dendrite arm spacing, feeding, and hot tear properties of aluminum alloys [A]. Proceedings of the International Symposium Engineering Alloys [C]. New York, United States, 1977: 131
98 Luo L, Luo L S, Su Y Q, et al. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79: 1
doi: 10.1016/j.jmst.2020.11.035
99 Chang Z Y, Wu Y J, Heng X W, et al. Characterization of microstructure and nanoscale phase in Mg-15Gd-1Zn (wt.%) alloy fabricated by rotating magnetic field casting [J]. Mater. Charact., 2020, 170: 110660
100 Zhu J Z, Guo J, Samonds M T. Numerical modeling of hot tearing formation in metal casting and its validations [J]. Int. J. Numer. Methods Eng., 2011, 87(1-5): 289
101 Du X D, Wang F, Wang Z, et al. Effect of Ca/Al ratio on hot tearing susceptibility of Mg-Al-Ca alloy [J]. J. Alloy. Compd., 2022, 911: 165113
102 Zhou Y, Mao P L, Wang Z, et al. Experimental investigation and simulation assessment on fluidity and hot tearing of Mg-Zn-Cu system alloys [J]. J. Mater. Process. Technol., 2021, 297: 117259
103 Zhou Y, Mao P L, Wang Z, et al. Effects of copper content and mold temperature on the hot tearing susceptibility of Mg-7Zn-xCu-0.6Zr alloys [J]. Metall. Mater. Trans., 2018, 49B: 3444
104 Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
105 Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
106 Wang Z, Huang Y D, Srinivasan A, et al. Experimental and numerical analysis of hot tearing susceptibility for Mg-Y alloys [J]. J. Mater. Sci., 2014, 49: 353
107 Wang F, Dong H K, Wang Z, et al. Hot cracking behavior of Mg-5Al-xCa Alloys [J]. Acta Metall. Sin., 2017, 53: 211
王 峰, 董海阔, 王 志 等. Mg-5Al-xCa合金的热裂行为 [J]. 金属学报, 2017, 53: 211
108 Shi K. Microstructure evolution of semi solid slurry of AZ91D magnesium alloy under ultrasonic vibration [D]. Nanchang: Nanchang University, 2021
史 坤. 超声振动下AZ91D镁合金半固态浆料微观组织演变 [D]. 南昌: 南昌大学, 2021
109 Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials [J]. Chin. J. Nonferrous Met., 2019, 29: 1953
翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望 [J]. 中国有色金属学报, 2019, 29: 1953
110 Li Y, Li H X, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys [J]. Prog. Mater. Sci., 2021, 117: 100741
111 Lee D C G. The hot tearing tendencies of aluminium casting alloys [J]. J. Inst. Met., 1946, 72: 644
112 Chen D X, Wang J S, Wang Y, et al. A review on hot tearing models in direct chill casting of aluminum alloys [J]. Aeronaut. Manuf. Technol., 2020, 63(22): 24
陈东旭, 王俊升, 王 郁 等. 铝合金半连续铸造过程中热裂模型综述 [J]. 航空制造技术, 2020, 63(22): 24
113 Williams J A, Singer A R E. Deformation, strength, and fracture above the solidus temperature [J]. J. Inst. Met., 1968, 96(1): 5
114 Novikov I I, Grushko O E. Hot cracking susceptibility of Al-Cu-Li and Al-Cu-Li-Mn alloys [J]. Mater. Sci. Technol., 1995, 11: 926
115 Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
116 Liu S M, Wei Z Q, Liu Z, et al. Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg-Zn x -Y2-Zr0.06 alloys with different initial mold temperatures [J]. J. Alloy. Compd., 2022, 904: 163963
117 Lin S, Aliravci C, Pekguleryuz M O. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining [J]. Metall. Mater. Trans., 2007, 38A: 1056
118 Easton M, Grandfield J, StJohn D, et al. The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys [J]. Mater. Sci. Forum, 2006, 519-521: 1675
119 Du X D, Wang F, Wang Z, et al. Effect of addition of minor amounts of Sb and Gd on hot tearing susceptibility of Mg-5Al-3Ca alloy [J]. J. Magnes. Alloy., 2023, 11: 694
120 Dong H K, Wang F, Wang Z, et al. Effect of Sn addition on hot tearing susceptibility of AXJ530 alloy [J]. Mater. Res. Express, 2018, 5: 036513
[1] LIU Jinlai, SUN Jingxia, MENG Jie, LI Jinguo. Microstructural Stability and Stress Rupture Properties of a Third-Generation Ni Base Single Crystal Supalloy[J]. 金属学报, 2024, 60(6): 770-776.
[2] ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang. Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments[J]. 金属学报, 2024, 60(6): 713-730.
[3] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[4] WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. 金属学报, 2024, 60(5): 670-680.
[5] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[6] LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. 金属学报, 2024, 60(5): 650-660.
[7] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[8] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[9] LIU Zhongwu, ZHOU Bang, LIAO Xuefeng, HE Jiayi. Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements[J]. 金属学报, 2024, 60(5): 585-604.
[10] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[11] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[12] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[13] HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. 金属学报, 2024, 60(4): 509-521.
[14] CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. 金属学报, 2024, 60(4): 495-508.
[15] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
No Suggested Reading articles found!