|
|
Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys |
WANG Feng1,2,3( ), BAI Shengwei1,2, WANG Zhi1,2, DU Xudong1,2( ), ZHOU Le1,2, MAO Pingli1,2, WEI Ziqi1,2, LI Jinwei3 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, Shenyang University of Technology, Shenyang 110870, China 3 Liaoning Automobile Lightweight Technology Professional Innovation Center, Liaoning Dide Technology Co. Ltd., Tieling 112611, China |
|
Cite this article:
WANG Feng, BAI Shengwei, WANG Zhi, DU Xudong, ZHOU Le, MAO Pingli, WEI Ziqi, LI Jinwei. Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys. Acta Metall Sin, 2024, 60(6): 743-759.
|
Abstract Mg-Zn series alloys, an important alloy system among magnesium alloys, have garnered considerable attention due to their rich phase composition, outstanding deformability, and aging strengthening effects. These alloys demonstrate great potential for applications in the aerospace, automotive, and biomedical industries. However, the wide solidification temperature range and large shrinkage of these alloys render them largely susceptible to hot tearing, limiting their applications to a certain extent. Thus, investigating the hot tearing behavior of Mg-Zn series alloys is important. In this paper, a comprehensive summary of theories pertaining to hot tearing, the effects of alloying elements and casting process parameters on the susceptibility of Mg-Zn series alloys to hot tearing, and the current status of research on the numerical simulation of this phenomenon are presented. Furthermore, this article discusses the influence of microstructure and solidification parameters of Mg-Zn series alloys on their hot tearing susceptibility and proposes limitations and suggestions for the current research on the hot tearing behavior of magnesium alloys to guide the design and application of Mg-Zn series alloys.
|
Received: 19 September 2023
|
|
Fund: Basic Scientific Research Project of Liaoning Provincial Department of Education (Key Research Project)(JYTZD2023108);High Level Innovation Team of Liaoning Province(XLYC-1908006);Liaoning Nature Fund Guidance Plan(2022-BS-179);General Project of Liaoning Provincial Department of Education(LJKMZ20220462) |
Corresponding Authors:
WANG Feng, professor, Tel: 15002424621, E-mail: wf9709@126.com; DU Xudong, Tel: 13940206929, E-mail: dxd9297@126.com
|
1 |
Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
|
2 |
Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
|
3 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
|
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
4 |
Bassan M, Buonomo B, Cavallari G, et al. Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures [J]. Int. J. Mod. Phys., 2013, 27B: 1350119
|
5 |
Mao P L, Wang F, Liu Z, Thermodynamics and Phase Diagrams of Magnesium Alloys [M]. Beijing: China Machine Press, 2015: 24
|
|
毛萍莉, 王 峰, 刘 正. 镁合金热力学及相图 [M]. 北京: 机械工业出版社, 2015: 24
|
6 |
Eskin D G, Katgerman L, Suyitno, et al. Contraction of aluminum alloys during and after solidification [J]. Metall. Mater. Trans., 2004, 35A: 1325
|
7 |
Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundryman, 1981, 74(4): 65
|
8 |
Zhou L. Investigations on hot tearing susceptibility and mechanism for Mg-Zn-(Al) alloys [D]. Shenyang: Shenyang University of Technology, 2011
|
|
周 乐. Mg-Zn-(Al)系合金热裂敏感性及其微观机理研究 [D]. 沈阳: 沈阳工业大学, 2011
|
9 |
Ramon J, Basu R, Voort G V, et al. A comprehensive study on solidification (hot) cracking in austenitic stainless steel welds from a microstructural approach [J]. Int. J. Pressure Vessels Pip., 2021, 194: 104560
|
10 |
Du X D. Solidification behavior and hot tearing mechanism of Mg-Al-Ca series alloys [D]. Shenyang: Shenyang University of Technology, 2023
|
|
杜旭东. Mg-Al-Ca系合金凝固行为及热裂机理研究 [D]. 沈阳: 沈阳工业大学, 2023
|
11 |
Vero J. The hot-shortness of aluminium alloys [J]. Met. Ind., 1936, 48: 431, 442
|
12 |
Singer A R E, Cottrell S A. Properties of the Al-Si Alloys at temperatures in the region of the solidus [J]. J. Inst. Met., 1946, 73: 33
|
13 |
Zhu Q. Study on the relationship between mushy zone strength and hot cracking of Mg-Zn based magnesium alloys [D]. Shenyang: Northeastern University, 2016
|
|
朱 强. Mg-Zn基镁合金的糊状区强度和热裂的关系研究 [D]. 沈阳: 东北大学, 2016
|
14 |
Sigworth G K. Hot tearing of metals [J]. Trans. Am. Foundrymen's Soc., 1996, 104: 1053
|
15 |
Wray P J. The geometry of two-phase aggregates in which the shape of the second phase is determined by its dihedral angle [J]. Acta Metall., 1976, 24: 125
|
16 |
Saveiko V N. Theory of hot tearing [J]. Russ. Cast. Prod., 1961, 11: 453
|
17 |
Campbell J. Castings [M]. 2nd Ed., Oxford: Butterworth-Heinemann, 2003: 253
|
18 |
Wang Y S, Wang Q D, Ding W J, et al. Research development of hot tear mechanism for cast alloys [J]. Special Cast. Nonferrous Alloys, 2000, 12(2): 48
|
|
王业双, 王渠东, 丁文江 等. 合金的热裂机理及其研究进展 [J]. 特种铸造及有色合金, 2000, 12(2): 48
|
19 |
Pellini W S. Strain theory of hot tearing [J]. Foundry, 1952, 80: 125
|
20 |
Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting [J]. Metall. Trans., 1982, 13B: 259
|
21 |
Clyne T W, Davies G J. Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition [A]. Procedings of the Conference on Solidification and Casting of Metals [M]. London: Metals Society, 1979: 274
|
22 |
Zhang S B. Investigations on testing methods and hot tearing susceptibility on Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
|
|
张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
|
23 |
Li X X, Liu S M, Liu Z, et al. Influence of Nd on hot tearing susceptibility and mechanism of Mg-Zn-Y-Zr alloys [J]. J. Mater. Eng. Perform., 2020, 29: 6714
|
24 |
Ding H, Fu H Z, Liu Z Y, et al. Compensation of Solidification contraction and hot cracking tendency of alloys [J]. Acta Metall. Sin., 1997, 33: 921
|
|
丁 浩, 傅恒志, 刘忠元 等. 凝固收缩补偿与合金的热裂倾向 [J]. 金属学报, 1997, 33: 921
|
25 |
M'hamdi M, Mo A, Martin C L. Two-phase modeling directed toward hot tearing formation in aluminum direct chill casting [J]. Metall. Mater. Trans., 2002, 33A: 2081
|
26 |
Liu Z, Zhang K, Zeng X Q. Theoretical Basis and Application of Magnesium-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 26
|
|
刘 正, 张 奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 26
|
27 |
Zhao Z Y. The application of RE-containing magnesium casting alloys in aviation industry in China [J]. J. Mater. Eng., 1993, (7): 8
|
|
赵志远. 铸造稀土镁合金在我国航空工业中的应用 [J]. 材料工程, 1993, (7): 8
|
28 |
Liu X, Zhang Z Q, Le Q C, et al. Effects of Nd/Gd value on the microstructures and mechanical properties of Mg-Gd-Y-Nd-Zr alloys [J]. J. Magnes. Alloy., 2016, 4: 214
|
29 |
Luo S F, Yang G Y, Qin H, et al. Substitution effects of Gd with Nd on microstructures and mechanical properties of Mg-10Gd-0.4Zr alloys [J]. Adv. Eng. Mater., 2020, 22: 1901576
|
30 |
Luo A A. Recent magnesium alloy development for elevated temperature applications [J]. Int. Mater. Rev., 2004, 49: 13
|
31 |
Zhang W Y. Study progress of magnesium alloy and its working technology [J]. Mater. China, 2007, 26(8): 15
|
|
张文毓. 镁合金及其加工技术研究进展 [J]. 稀有金属快报, 2007, 26(8): 15
|
32 |
Shi L, Li J W, Guan R G, et al. Effects of Mn and Ca elements on the microstructures of magnesium alloys [J]. Non-Ferr. Min. Metall., 2008, 24(1): 23, 55
|
|
石 路, 李江委, 管仁国 等. Ca、Mn对镁合金凝固组织的影响 [J]. 有色矿冶, 2008, 24(1): 23, 55
|
33 |
Zhang W P, Ma M L, Zhang K, et al. Microstructures and properties of Mg-2Zn alloys with different Cu contents [J]. Chin. J. Rare Met., 2020, 44: 113
|
|
张万鹏, 马鸣龙, 张 奎 等. Cu含量对Mg-2Zn合金组织及性能影响研究 [J]. 稀有金属, 2020, 44: 113
|
34 |
Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
|
35 |
Jiang S Y, Yuan Y, Chen T, et al. Research progress on corrosion resistance of magnesium alloys in aspect of element solid-solution and precipitation [J]. J. Mater. Eng., 2021, 49(12): 40
|
|
蒋诗语, 袁 媛, 陈 涛 等. 元素固溶与析出对镁合金耐蚀性影响的研究进展 [J]. 材料工程, 2021, 49(12): 40
doi: 10.11868/j.issn.1001-4381.2021.000286
|
36 |
Huang X F, Zhu K, Cao X J, et al. The roles of alloying elements in magnesium alloys [J]. Found. Technol., 2008, 29: 1574
|
|
黄晓锋, 朱 凯, 曹喜娟. 主要合金元素在镁合金中的作用 [J]. 铸造技术, 2008, 29: 1574
|
37 |
Wang Z, Huang Y D, Srinivasan A, et al. Influences of Y additions on the hot tearing susceptibility of Mg-1.5wt.%Zn alloys [J]. Met. Sci. Forum, 2013, 765: 306
|
38 |
Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
|
39 |
Wei Z Q, Wang Y, Liu Z. Effects of Zn and Y on hot-tearing susceptibility of Mg-xZn-2xY alloys [J]. Mater. Sci. Technol., 2018, 34: 2001
|
40 |
Feng Y, Mao P L, Liu Z, et al. Effect of yttrium content on hot tearing susceptibility of MgZn4.5Y x Zr0.5 alloys [J]. Chin. J. Nonferrous Met., 2017, 27: 1970
|
|
冯 羽, 毛萍莉, 刘 正 等. 钇含量对MgZn4.5Y x Zr0.5合金热裂敏感性的影响 [J]. 中国有色金属学报, 2017, 27: 1970
|
41 |
Zhou Z J, Liu Z, Wang Y, et al. Effects of the second phase on hot tearing susceptibility of Mg-Zn-Y alloy [J]. Mater. Res. Express, 2018, 6: 016529
|
42 |
Zhou Y, Mao P L, Zhou L, et al. Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg-1Zn-xY alloys [J]. J. Magnes. Alloy., 2020, 8: 1176
|
43 |
Wei Z Q, Liu Z, Wang Y, et al. Hot tearing behavior and microstructure mechanism of Mg-6.5Zn-xY-0.5Zr alloys [J]. Mater. Res. Express, 2019, 6: 076570
|
44 |
Jia D R, Liu Z, Mao P L, et al. Hot tearing behavior of Mg-5(Zn + Y)-0.5Zr alloys [J]. Mater. Res. Express, 2017, 4: 106511
|
45 |
Li X X, Liu Z, Wang Y, et al. Hot tearing defects of as-cast Mg-xZn-0.5Y-0.5Zr alloys [J]. Chin. J. Rare Met., 2020, 44: 697
|
|
李星星, 刘 正, 王 越 等. 铸态镁合金Mg-xZn-0.5Y-0.5Zr热裂缺陷研究 [J]. 稀有金属, 2020, 44: 697
|
46 |
Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
|
47 |
Wang Z, Yao S, Feng Y, et al. Solidification pathways and hot tearing susceptibility of MgZn x Y4Zr0.5 alloys [J]. China Found., 2018, 15: 124
|
48 |
Wei Z Q. Effects of solidification behavior of several Mg-Zn-RE (Y, Gd) series alloys on hot tearing mechanism [D]. Shenyang: Shenyang University of Technology, 2021
|
|
魏子淇. 几种Mg-Zn-RE(Y, Gd)系合金凝固行为对热裂机制的影响 [D]. 沈阳: 沈阳工业大学, 2021
|
49 |
Liu P, Jiang H T, Cai Z X, et al. The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg-Zn alloys [J]. J. Magnes. Alloy., 2016, 4: 188
|
50 |
Li R G, Yan Y, Pan H C. Achieving a high-strength binary Mg-15Gd alloy by nano substructure with Gd segregation and nano clusters [J]. Mater. Res. Lett., 2022, 10: 682
|
51 |
Srinivasan A, Wang Z, Huang Y D, et al. Hot tearing characteristics of binary Mg-Gd alloy castings [J]. Metall. Mater. Trans., 2013, 44A: 2285
|
52 |
Luo S F, Yang G Y, Zou Z, et al. Hot tearing susceptibility of binary Mg-Gd alloy castings and influence of grain refinement [J]. Adv. Eng. Mater., 2018, 20: 1800139
|
53 |
Liu S J. Researches on the solidification characteristic and mechanical properties of Mg-Zn-Gd-based magnesium alloy [D]. Xi'an: Northwestern Polytechnical University, 2015
|
|
刘少军. Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究 [D]. 西安: 西北工业大学, 2015
|
54 |
Qin H, Yang G Y, Zheng X W, et al. Effect of Gd content on hot-tearing susceptibility of Mg-6Zn-xGd casting alloys [J]. China Found., 2022, 19: 131
|
55 |
Fu X Q, Liu S M, Zhou L, et al. Study on the coupling behavior and micro-mechanism of solidification and hot tearing of Mg-xZn-2xGd Alloys [J]. Int. J. Metalcast., 2021, 15: 1175
|
56 |
Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
|
57 |
Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium Alloys [J]. Acta Metall. Sin., 2019, 55: 389
|
|
刘耀鸿, 王朝辉, 刘 轲 等. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响 [J]. 金属学报, 2019, 55: 389
doi: 10.11900/0412.1961.2018.00399
|
58 |
Liu Y H, Wang Z H, Li S B, et al. Hot cracking behaviors of Mg-Zn-Er alloys with different Er contents [J]. Metals, 2023, 16: 3546
|
59 |
Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 1
|
60 |
Zhou Z J. Study on solidification behavior and hot tearing susceptibility of Mg-Zn-Y alloy [D]. Shenyang: Shenyang University of Technology, 2019
|
|
周子荐. Mg-Zn-Y合金凝固行为及热裂敏感性研究 [D]. 沈阳: 沈阳工业大学, 2019
|
61 |
Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
|
62 |
Chen X H, Liu L Z, Pan F S, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys [J]. Mater. Sci. Eng., 2015, B197: 67
|
63 |
Zhang W P. Effect of Cu element on microstructure and thermalphysical properties of Mg-Zn alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2018
|
|
张万鹏. Cu元素对Mg-Zn系合金显微组织及热物性能影响研究 [D]. 北京: 北京有色金属研究总院, 2018
|
64 |
Zhu H M, Luo C P, Liu J W, et al. Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60 [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 605
|
65 |
Hu Y B, Yao Q S, Zhu C, et al. Effects of mass ratio of zinc/copper on microstructure and properties of extruded Mg-Zn-Cu-Ce alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1668
|
|
胡耀波, 姚青山, 朱 灿 等. Zn/Cu质量比对挤压态Mg-Zn-Cu-Ce合金组织和性能的影响 [J]. 稀有金属材料与工程, 2017, 46: 1668
|
66 |
Wang Z, Li Y Z, Wang F, et al. Effect of Cu additions on microstructure, mechanical properties and hot-tearing susceptibility of Mg-6Zn-0.6Zr alloys [J]. J. Mater. Eng. Perform., 2016, 25: 5530
|
67 |
Wang Z, Zhou Y, Li Y Z, et al. Hot tearing behaviors and in-situ thermal analysis of Mg-7Zn-xCu-0.6Zr alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1504
|
68 |
Zhang B P, Wang Y, Geng L. Research on Mg-Zn-Ca alloy as degradable biomaterial [A]. Biomaterials—Physics and Chemistry [M], 2011: 183
|
69 |
Cao L F, Du W B, Su X K, et al. Role of calcium alloying in magnesium alloys [J]. Found. Technol., 2006, 27: 182
|
|
曹林锋, 杜文博, 苏学宽 等. Ca合金化在镁合金中的作用 [J]. 铸造技术, 2006, 27: 182
|
70 |
Song J F, Wang Z, Huang Y D, et al. Hot tearing characteristics of Mg-2Ca-xZn alloys [J]. J. Mater. Sci., 2016, 51: 2687
|
71 |
Liu Z, Zhang Y, Mao P L, et al. Effect of Ca on hot tearing susceptibility of Mg-Zn alloy [J]. J. Shenyang Univ. Technol., 2013, 35: 624
|
|
刘 正, 张 越, 毛萍莉 等. Ca对Mg-Zn合金热裂敏感性的影响 [J]. 沈阳工业大学学报, 2013, 35: 624
|
72 |
Bai S W, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys [J]. Int. J. Metalcast., 2021, 15: 1298
|
73 |
Yin P, Li N F, Lei T, et al. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys [J]. J. Mater. Sci. Mater. Med., 2013, 24: 1365
|
74 |
Yang M B, Pan F S, Li Z S, et al. Alloying elements and their effects in Mg-Al based elevated temperature magnesium alloy [J]. Mater. Rep., 2005, (04): 46
|
|
杨明波, 潘复生, 李忠盛 等. Mg-Al系耐热镁合金中的合金元素及其作用 [J]. 材料导报, 2005, (04): 46
|
75 |
Yang M B, Pan F S, Yang A T, et al. Research status of Mg-Zn-Al(ZA) based elevated temperature magnesium alloy [J]. Hot Work. Technol., 2007, 36(8): 73
|
|
杨明波, 潘复生, 汤爱涛 等. Mg-Zn-Al(ZA)系耐热镁合金的研究现状 [J]. 热加工工艺, 2007, 36(8): 73
|
76 |
Vinodh G, Jafari Hodooshan H R, Li D J, et al. Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys [J]. Metall. Mater. Trans., 2020, 51A: 1897
|
77 |
Li T X, Wang F, Du X D, et al. Effect of Al content on hot tearing susceptibility of Mg-5Zn-0.6Mn-xAl-0.6Zr alloys [J/OL]. Int. J. Metalcast., 2022. (2023-06-30).
|
78 |
Li B C, Zhang J, Ye F W, et al. An approach to studying the hot tearing mechanism of alloying elements in ternary Mg-Zn-Al alloys [J]. J. Mater. Process. Technol., 2023, 317: 117980
|
79 |
Li X X, Liu Z, Wang Y, et al. Investigation on hot tearing behavior and its mechanism of Mg-4.5Zn-xY-yNd (x + y = 6, x = 0, 1, 3, 6) alloys [J]. Mater. Res. Express, 2019, 6: 106535
|
80 |
Wei Z Q, Liu S M, Liu Z, et al. Effects of Zn content on hot tearing susceptibility of Mg-Zn-Gd-Y-Zr alloys [J]. Int. J. Metalcast., 2022, 16: 1902
|
81 |
Zhu G N, Wang Z, Qiu W Y, et al. Effect of yttrium on hot tearing susceptibility of Mg-6Zn-1Cu-0.6Zr alloys [J]. Int. J. Metalcast., 2020, 14: 179
|
82 |
Zhou J, Nodooshan H R J, Li D J, et al. Microstructure and tensile properties of the Mg-6Zn-4Al-xSn die cast magnesium alloy [J]. Metals, 2019, 9: 113
|
83 |
Leng F, Wang F, Du X D, et al. Study on the hot tearing susceptibility of Mg-4Zn-xSn-1Ca alloys [J]. Int. J. Metalcast., 2022, 17: 342
|
84 |
Leng F. Study on hot tearing behavior of Mg-Zn-Sn alloys under magnetic field [D]. Shenyang: Shenyang University of Technology, 2021
|
|
冷 枫. 磁场作用下Mg-Zn-Sn合金热裂行为研究 [D]. 沈阳: 沈阳工业大学, 2021
|
85 |
Anthony A I, Suzuki A, Kamado S, et al. Optimization of Mg-Zn-Al-Ca-La alloys for the improvement of casting properties and creep resistance [J]. Mater. Sci. Forum, 2005, 488-489: 805
|
86 |
Zhang G J, Wang Y, Liu Z, et al. Influence of Al addition on solidification path and hot tearing susceptibility of Mg-2Zn-(3 + 0.5x)Y-xAl alloys [J]. J. Magnes. Alloy., 2019, 7: 272
|
87 |
Zhang G J, Liu Z, Wang Y, et al. An investigation on solidification path and hot tearing tendency of Mg-2Zn-3Y-xAl alloys [J]. Mater. Sci. Eng. Technol., 2019, 50: 1471
|
88 |
Zhang Z, Couture A, Luo A L. An investigation of the properties of Mg-Zn-Al alloys [J]. Scr. Mater., 1998, 39: 45
|
89 |
Birru A K, Benny Karunakar D. Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1783
|
90 |
Dong J, Zhao Z H, Cui J Z, et al. Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy [J]. Metall. Mater. Trans., 2004, 35A: 2487
|
91 |
Du X D, Wang F, Wang Z, et al. Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1259
|
92 |
Duan W C, Yin S Q, Liu W H, et al. Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field [J]. J. Magnes. Alloy., 2021, 9: 166
|
93 |
Zhang Z W, Le Q C, Bao L, et al. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of semi-continuous casting ZK60 magnesium alloy billets [J]. China Found., 2013, 10: 351
|
94 |
Zhou Y, Mao P L, Wang Z, et al. Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy [J]. J. Mater. Process. Technol., 2020, 282: 116679
|
95 |
Bai S W, Wang F, Du X D, et al. Effect of alternating magnetic fields on hot tearing susceptibility of Mg-4Zn-1.5Ca alloy [J]. Mater. Sci. Technol., 2023, 39: 50
|
96 |
Du X D, Wang F, Bai S W, et al. Effect of low-frequency alternating magnetic field strength on hot tearing susceptibility of AXJ530 alloy [J]. Int. J. Metalcast., 2022, 17: 2017
|
97 |
Feurer U. Influence of alloy composition and solidification conditions on dendrite arm spacing, feeding, and hot tear properties of aluminum alloys [A]. Proceedings of the International Symposium Engineering Alloys [C]. New York, United States, 1977: 131
|
98 |
Luo L, Luo L S, Su Y Q, et al. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79: 1
doi: 10.1016/j.jmst.2020.11.035
|
99 |
Chang Z Y, Wu Y J, Heng X W, et al. Characterization of microstructure and nanoscale phase in Mg-15Gd-1Zn (wt.%) alloy fabricated by rotating magnetic field casting [J]. Mater. Charact., 2020, 170: 110660
|
100 |
Zhu J Z, Guo J, Samonds M T. Numerical modeling of hot tearing formation in metal casting and its validations [J]. Int. J. Numer. Methods Eng., 2011, 87(1-5): 289
|
101 |
Du X D, Wang F, Wang Z, et al. Effect of Ca/Al ratio on hot tearing susceptibility of Mg-Al-Ca alloy [J]. J. Alloy. Compd., 2022, 911: 165113
|
102 |
Zhou Y, Mao P L, Wang Z, et al. Experimental investigation and simulation assessment on fluidity and hot tearing of Mg-Zn-Cu system alloys [J]. J. Mater. Process. Technol., 2021, 297: 117259
|
103 |
Zhou Y, Mao P L, Wang Z, et al. Effects of copper content and mold temperature on the hot tearing susceptibility of Mg-7Zn-xCu-0.6Zr alloys [J]. Metall. Mater. Trans., 2018, 49B: 3444
|
104 |
Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
|
105 |
Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
|
106 |
Wang Z, Huang Y D, Srinivasan A, et al. Experimental and numerical analysis of hot tearing susceptibility for Mg-Y alloys [J]. J. Mater. Sci., 2014, 49: 353
|
107 |
Wang F, Dong H K, Wang Z, et al. Hot cracking behavior of Mg-5Al-xCa Alloys [J]. Acta Metall. Sin., 2017, 53: 211
|
|
王 峰, 董海阔, 王 志 等. Mg-5Al-xCa合金的热裂行为 [J]. 金属学报, 2017, 53: 211
|
108 |
Shi K. Microstructure evolution of semi solid slurry of AZ91D magnesium alloy under ultrasonic vibration [D]. Nanchang: Nanchang University, 2021
|
|
史 坤. 超声振动下AZ91D镁合金半固态浆料微观组织演变 [D]. 南昌: 南昌大学, 2021
|
109 |
Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials [J]. Chin. J. Nonferrous Met., 2019, 29: 1953
|
|
翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望 [J]. 中国有色金属学报, 2019, 29: 1953
|
110 |
Li Y, Li H X, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys [J]. Prog. Mater. Sci., 2021, 117: 100741
|
111 |
Lee D C G. The hot tearing tendencies of aluminium casting alloys [J]. J. Inst. Met., 1946, 72: 644
|
112 |
Chen D X, Wang J S, Wang Y, et al. A review on hot tearing models in direct chill casting of aluminum alloys [J]. Aeronaut. Manuf. Technol., 2020, 63(22): 24
|
|
陈东旭, 王俊升, 王 郁 等. 铝合金半连续铸造过程中热裂模型综述 [J]. 航空制造技术, 2020, 63(22): 24
|
113 |
Williams J A, Singer A R E. Deformation, strength, and fracture above the solidus temperature [J]. J. Inst. Met., 1968, 96(1): 5
|
114 |
Novikov I I, Grushko O E. Hot cracking susceptibility of Al-Cu-Li and Al-Cu-Li-Mn alloys [J]. Mater. Sci. Technol., 1995, 11: 926
|
115 |
Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
|
116 |
Liu S M, Wei Z Q, Liu Z, et al. Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg-Zn x -Y2-Zr0.06 alloys with different initial mold temperatures [J]. J. Alloy. Compd., 2022, 904: 163963
|
117 |
Lin S, Aliravci C, Pekguleryuz M O. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining [J]. Metall. Mater. Trans., 2007, 38A: 1056
|
118 |
Easton M, Grandfield J, StJohn D, et al. The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys [J]. Mater. Sci. Forum, 2006, 519-521: 1675
|
119 |
Du X D, Wang F, Wang Z, et al. Effect of addition of minor amounts of Sb and Gd on hot tearing susceptibility of Mg-5Al-3Ca alloy [J]. J. Magnes. Alloy., 2023, 11: 694
|
120 |
Dong H K, Wang F, Wang Z, et al. Effect of Sn addition on hot tearing susceptibility of AXJ530 alloy [J]. Mater. Res. Express, 2018, 5: 036513
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|