Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (2): 189-200    DOI: 10.11900/0412.1961.2022.00350
Research paper Current Issue | Archive | Adv Search |
Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties
HU Baojia1,2, ZHENG Qinyuan1,2, LU Yi1,2, JIA Chunni1, LIANG Tian3, ZHENG Chengwu1(), LI Dianzhong1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties. Acta Metall Sin, 2024, 60(2): 189-200.

Download:  HTML  PDF(4890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to the excellent combination of specific strength and ductility, medium Mn steels (MMSs) with Mn contents of 3%-12% (mass fraction) are considered the most promising candidates for the third-generation advanced high-strength steel. The combination of excellent strength-ductility is mainly attributed to the active transformation-induced plasticity effect of the metastable retained austenite during deformation. Therefore, producing a considerable amount of retained austenite with reasonable stabilities in the steel by various heat treatment schedules is always important. In this study, granular- and lamellar-structured retained austenites were developed in a cold-rolled 0.15C-5Mn MMS by introducing a technical process of precontrolling ferrite recrystallization in the annealing schedule. The microstructures of the annealed samples were analyzed using SEM, EBSD, and TEM. The results show that duplex microstructures comprising various amounts of recrystallized ferrite and fresh martensite can be obtained in the cold-rolled MMS when controlling the occurrence of recrystallization at different intercritical temperatures by a preannealing process. When this microstructure is used for the final austenite reverted transformation annealing, the resultant ultrafine duplex microstructure with recrystallized ferrite and two types of heterogeneous retained austenite, i.e., lamellar and granular, is produced. The heterogeneous-structured austenite shows more sensitivity to increasing strain, i.e., various mechanical stabilities, which enable an excellent strength-ductility combination and reduced Lüders strain in the cold-rolled medium Mn steel.

Key words:  cold-rolled medium Mn steel      ferrite recrystallization      retained austenite      TRIP effect      mechanical property     
Received:  20 July 2022     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(52071322)
Corresponding Authors:  ZHENG Chengwu, professor, Tel: (024)23971973, E-mail: cwzheng@imr.ac.cn;
LI Dianzhong, professor, Tel: (024)23971281, E-mail: dzli@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00350     OR     https://www.ams.org.cn/EN/Y2024/V60/I2/189

Fig.1  Schematic of the thermal cycles used for the heat treatment of the cold-rolled 0.15C-5Mn medium Mn steel (MMS) (Ae3—the highest temperature at which ferrite and austenite phases can coexist in equilibrium. Ae1—the lowest temperature at which ferrite, cementite, and austenite phases can coexist in equilibrium in the steel. ART—austenite reverted transformation)
Fig.2  SEM images (a-c) and TEM bright-field images (d-f) showing the microstructures of the cold-rolled 0.15C-5Mn MMS pre-annealed at 680oC (a, d), 700oC (b, e), and 720oC (c, f) (α—ferrite, M—martensite)
Fig.3  EBSD band contrast images (a-c) and kernel average misorientation (KAM) maps (d-f) of the cold-rolled 0.15C-5Mn MMS pre-annealed at 680oC (a, d), 700oC (b, e), and 720oC (c, f) (The red, green, and blue lines represent boundaries with misorientations of 2° < θ < 5°, 5° ≤ θ < 15°, and θ ≥ 15°, respectively)
Fig.4  SEM images (a-d) and TEM bright-field images (e-h) showing the final microstructures of the cold-rolled 0.15C-5Mn MMS (γG—globular retained austenite, γL—lath-like retained austenite) (a, e) R-ART680 (b, f) R-ART700 (c, g) R-ART720 (d, h) ART650
Fig.5  XRD spectra and the measured fractions of retained austenite of the cold-rolled 0.15C-5Mn MMS (Vγ —volume fraction of austenite)
Fig.6  Engineering stress-strain curves of the cold-rolled 0.15C-5Mn MMS treated by various thermal cycles
Fig.7  Schematics showing the microstructure evolution during final ART processes after pre-annealing at intercritical temperatures of 680oC (a), 700oC (b), and 720oC (c) of the cold-rolled MMS
Fig.8  STEM images showing the refined microstructures of the cold-rolled 0.15C-5Mn MMS after the pre-annealing at 700oC (a) and then after the final ART heat treatment (b)
Fig.9  Work hardening rate curves of the cold-rolled 0.15C-5Mn MMSs treated by various thermal cycles (Insets show corresponding engineering stress-strain curves as comparisons. YPE—yield point elongation)
Fig.10  True stress-true strain curve with the corresponding work hardening rate curve (a), EBSD phase distribution maps (b-d) and geometrically necessary dislocations (GNDs) maps (e-g) of the R-ART700 sample when stretching to true strains of ε = 0.0 (b, e), 0.05 (c, f), and 0.10 (d, g), respectively (The white circle areas are identified as the prior globular retained austenite areas, and the black circle area is identified as the prior lath-like retained austenite area)
1 Yang D P, Du P J, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75: 205
doi: 10.1016/j.jmst.2020.10.032
2 Huang L, Deng X T, Liu J, et al. Relationship between retained austenite stability and cryogenic impact toughness in 0.12C-3.0Mn low carbon medium manganese steel [J]. Acta Metall. Sin., 2017, 53: 316
黄 龙, 邓想涛, 刘 佳 等. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系 [J]. 金属学报, 2017, 53: 316
3 Chen S, Hu J, Shan L Y, et al. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels [J]. Mater. Sci. Eng., 2021, A803: 140706
4 Hu B J, Zheng Q Y, Jia C N, et al. Improvement of mechanical properties of a medium-Mn TRIP steel by precursor microstructure control [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1068
doi: 10.1007/s40195-021-01355-6
5 Cai M H, Huang H S, Pan H J, et al. Microstructure and tensile properties of a Nb-Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 665
doi: 10.1007/s40195-017-0597-0
6 Lu Q, Lai Q Q, Chai Z S, et al. Revolutionizing car body manufacturing using a unified steel metallurgy concept [J]. Sci. Adv., 2021, 7: eabk0176
doi: 10.1126/sciadv.abk0176
7 Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling [J]. Acta Metall. Sin., 2018, 54: 859
阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究 [J]. 金属学报, 2018, 54: 859
8 Cai M H, Huang H S, Su J H, et al. Enhanced tensile properties of a reversion annealed 6.5Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction [J]. J. Mater. Sci. Technol., 2018, 34: 1428
doi: 10.1016/j.jmst.2017.12.008
9 Hu J, Du L X, Xu W, et al. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite [J]. Mater. Charact., 2018, 136: 20
doi: 10.1016/j.matchar.2017.11.058
10 Liang J H, Zhao Z Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix [J]. Mater. Sci. Eng., 2018, A711: 175
11 Yan S, Liu X H, Liang T S, et al. The effects of the initial microstructure on microstructural evolution, mechanical properties and reversed austenite stability of intercritically annealed Fe-6.1Mn-1.5Si-0.12C steel [J]. Mater. Sci. Eng., 2018, A712: 332
12 Li Y, Li W, Min N, et al. Mechanical response of a medium manganese steel with encapsulated austenite [J]. Scr. Mater., 2020, 178: 211
doi: 10.1016/j.scriptamat.2019.11.033
13 Luo L B, Li W, Liu S L, et al. Effect of intermediate temperature annealing on the stability of retained austenite and mechanical properties of medium Mn-TRIP steel [J]. Mater. Sci. Eng., 2019, A742: 69
14 LI X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing [J]. Scr. Mater., 2018, 154: 30
doi: 10.1016/j.scriptamat.2018.05.016
15 Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel [J]. Mater. Sci. Eng., 2017, A698: 126
16 Shen G H, Hu B, Yang Z B, et al. Influence of tempering temperature on mechanical properties and microstructures of high-Al-contained medium Mn steel having δ-ferrite [J]. Acta Metall. Sin., 2022, 58: 165
沈国慧, 胡 斌, 杨占兵 等. 回火温度对含δ铁素体高铝中锰钢力学性能和微观组织的影响 [J]. 金属学报, 2022, 58: 165
doi: 10.11900/0412.1961.2021.00089
17 Zhou C, Ye Q B, Hu J, et al. Ultra-high-strength multi-alloyed steel with enhanced cryogenic toughness using thermally stable retained austenite [J]. Mater. Sci. Eng., 2022, A831: 142356
18 Hui W J, Shao C W, Zhang Y J, et al. Microstructure and mechanical properties of medium Mn steel containing 3%Al processed by warm rolling [J]. Mater. Sci. Eng., 2017, A707: 501
19 Cheng P, Hu B, Liu S L, et al. Influence of retained austenite and Cu precipitates on the mechanical properties of a cold-rolled and intercritically annealed medium Mn steel [J]. Mater. Sci. Eng., 2019, A746: 41
20 Wei X, Zhang X L, Cai M H, et al. Stress-state-dependent deformation and fracture behaviors in a cold-rolled 7Mn steel [J]. Mater. Sci. Eng., 2022, A831: 142102
21 Zhang Y, Ding H. Ultrafine also can be ductile: On the essence of Lüders band elongation in ultrafine-grained medium manganese steel [J]. Mater. Sci. Eng., 2018, A733: 220
22 Hu B, Tu X, Wang Y, et al. Recent progress and future research prospects on the plastic instability of medium-Mn steels: A review [J]. Chin. J. Eng., 2020, 42: 48
胡 斌, 屠 鑫, 王 玉 等. 中锰钢塑性失稳现象的研究进展及未来研究展望 [J]. 工程科学学报, 2020, 42: 48
23 Yan S, Li T L, Liang T S, et al. By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously [J]. Mater. Sci. Eng., 2019, A758: 79
24 Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands [J]. Mater. Sci. Eng., 2017, A679: 230
25 Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system [J]. J. Alloys Compd., 2017, 691: 51
doi: 10.1016/j.jallcom.2016.08.093
26 Wang H S, Zhang Y X, Yuan G, et al. Significance of cold rolling reduction on Lüders band formation and mechanical behavior in cold-rolled intercritically annealed medium-Mn steel [J]. Mater. Sci. Eng., 2018, A737: 176
27 Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, A707: 270
28 Han J, Kang S H, Lee S J, et al. Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties [J]. J. Alloys Compd., 2016, 681: 580
doi: 10.1016/j.jallcom.2016.04.014
29 Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
30 Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels [J]. Mater. Des., 2015, 83: 42
doi: 10.1016/j.matdes.2015.05.085
31 Wan X H, Liu G, Yang Z G, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure [J]. Scr. Mater., 2021, 198: 113819
doi: 10.1016/j.scriptamat.2021.113819
32 Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel [J]. Metall. Mater. Trans., 2018, 49A: 4404
33 Kim M T, Park T M, Baik K H, et al. Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels [J]. Mater. Sci. Eng., 2019, A752: 43
34 Zhang X L, Yan J H, Liu T, et al. Microstructural evolution and mechanical behavior of a novel heterogeneous medium Mn cold-rolled steel [J]. Mater. Sci. Eng., 2021, A800: 140344
35 Wan X H, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium Mn steels [J]. Scr. Mater., 2019, 166: 68
doi: 10.1016/j.scriptamat.2019.03.015
36 Hu B J, Zheng C W, Zheng Q Y, et al. Ultra-fine heterogeneous microstructure enables high strength-ductility in a cold-rolled medium Mn steel [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1712
doi: 10.1007/s40195-022-01414-6
37 Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel [J]. Mater. Sci. Eng., 2010, A527: 3442
38 Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel [J]. Metall. Mater. Trans., 2015, 46A: 2356
39 De Cooman B C, Lee S J, Shin S, et al. Combined intercritical annealing and Q&P processing of medium Mn steel [J]. Metall. Mater. Trans., 2017, 48A: 39
40 Hu B, Shen X, Gao Q Y, et al. Yielding behavior of triplex medium Mn steel alternated with cooling strategies altering martensite/ferrite interfacial feature [J]. J. Mater. Sci. Technol., 2022, 126: 60
doi: 0.1016/j.jmst.2022.04.003
41 Jeong M S, Park T M, Choi S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure [J]. Scr. Mater., 2021, 190: 16
doi: 10.1016/j.scriptamat.2020.08.022
42 Lai Q Q, Gouné M, Perlade A, et al. Mechanism of austenite formation from spheroidized microstructure in an intermediate Fe-0.1C-3.5Mn steel [J]. Metall. Mater. Trans., 2016, 47A: 3375
43 Chen L S, Zhang J Y, Tian Y Q, et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P Steels [J]. Acta Metall. Sin., 2015, 51: 527
陈连生, 张健杨, 田亚强 等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响 [J]. 金属学报, 2015, 51: 527
44 Rao P M, Sarma V S, Sankaran S. Microstructure and mechanical properties of V-Nb microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing [J]. Metall. Mater. Trans., 2017, 48A: 1176
45 Hu J, Du L X, Sun G S, et al. The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel [J]. Scr. Mater., 2015, 104: 87
doi: 10.1016/j.scriptamat.2015.04.009
46 Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
47 Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
doi: 10.1016/j.actamat.2019.07.043
48 Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing [J]. J. Mater. Sci., 2019, 54: 6565
doi: 10.1007/s10853-018-03291-w
49 Ma J W, Liu H T, Lu Q, et al. Transformation kinetics of retained austenite in the tensile Lüders strain range in medium Mn steel [J]. Scr. Mater., 2019, 169: 1
doi: 10.1016/j.scriptamat.2019.04.044
[1] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[2] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[3] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
[4] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!