Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (9): 1141-1149    DOI: 10.11900/0412.1961.2021.00491
Research paper Current Issue | Archive | Adv Search |
Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature
GAO Dong1, ZHOU Yu2(), YU Ze3, SANG Baoguang1()
1.School of Mechanical Engineering and Automation, Dalian Polytecnic University, Dalian 116034, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.AVIC Shenyang Aircraft Company Limited, Shenyang 110850, China
Cite this article: 

GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature. Acta Metall Sin, 2022, 58(9): 1141-1149.

Download:  HTML  PDF(3114KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pure Ti can form twins during deformation due to the hcp crystal structure, and some kinds of twins can easily form under certain conditions, thus affecting the properties of materials. It has considerable influence on the properties of materials through the regulation of twin types and variants. This work investigates the effect of the dislocation slip of adjacent grains on the selection of twin variants during the deformation of pure Ti. The dynamic plastic deformation (DPD) of commercially pure Ti (99.9%) was performed at liquid nitrogen temperature (-196oC). The microstructure before and after the deformation was observed using EBSD. The influence of twinning on Schmid factor (m) before and after deformation was investigated, and a mechanism for selecting twin variants of polycrystalline pure Ti was proposed. The results show that after DPD at liquid nitrogen temperature, high-density primary twins appeared in pure Ti, followed by secondary and double twins. After twinning, the Schmid factor of basal slip changed noticeably, and the m of a large number of grains was close to 0.5. Based on the geometric compatibility factor (m') of the original slip and twin matching relationship and the Schmid factor of an adjacent grain (m1), a new orientation compatibility factor ω (ω = m1·m') was established, and the selection of twin variants in the plastic deformation of polycrystalline pure titanium was quantitatively analyzed. It was discovered that the ω determines the selection of twin variants in pure Ti, and the pyramidal slip <a> of the adjacent grain plays a significant role in promoting the initiation of twin variants.

Key words:  pure Ti      microstructure      geometric compatibility factor      orientation compatibility factor      twin variant     
Received:  12 November 2021     
ZTFLH:  TG146.23  
Fund: Joint Research and Development Fund of Liaoning Province and Shenyang National Laboratory for Materials Science(2019JH3/30100030);Young Talents Project of Shenyang National Laboratory for Materials Science, and Natural Science Foundation Project of Liaoning Provincial Department of Education(J2020050)
About author:  SANG Baoguang, associate professor, Tel: (0411)86324505, E-mail: sangbg@dlpu.edu.cn;ZHOU Yu, associate professor, Tel: (024)83970971, E-mail: yzhou@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00491     OR     https://www.ams.org.cn/EN/Y2022/V58/I9/1141

Fig.1  Schematic of the seleced position of pure Ti sample (ND—normal direction, TD—transverse direction, RD—rolling direction)
Fig.2  EBSD images (a, b), (0001) pole figures (c, d), and image quality maps (e, f) of pure Ti before (a, c, e) and after (b, d, f) dynamic plastic deformation (DPD)
Type of twin

Misorientation angle

and axis

Frequency of twin

%

{ 101¯2}85° < 12¯10>7.87
{ 101¯1}57.2° < 12¯10>0.02
{ 112¯1}35° < 101¯0>0.15
{ 112¯2}64.4° < 101¯0>11.50
{ 112¯3}86.8° < 12¯10>0.50
{ 112¯4}77° < 12¯10>1.20
Total-21.24
Table 1  Frequencies of twinning boundaries in pure Ti after DPD
Fig.3  Microstructures of typical areas in pure Ti after DPD at liquid nitrogen temperature
(a) secondary twin
(b, d) double twin
(c) tertiary twin
Fig.4  TEM images of rich twins (a) and twins nucleate at grain boundaries (b) in pure Ti after DPD at liquid nitrogen temperature (GB—grain boundary)
Type of Burgers vectorSlip directionSlip planeTotal number of slip systemIndependent number of slip system
Basal <a>< 112¯0>{0002}32
Prismatic <a>< 112¯0>{ 101¯0}32
Pyramidal <a>< 112¯0>{ 101¯1}64
Pyramidal <c + a>< 1¯1¯23>{ 12¯12}65
Table 2  Slip systems of Ti[25]
Fig.5  Schmid factors (m) in basal slip (a, e), prismatic slip (b, f), pyramidal <a> slip (c, g), and pyramidal <c + a> slip (d, h) before (a-d) and after (e-h) DPD (σ—compression direction)
Fig.6  m in basal slip (a), prismatic slip (b), pyramidal <a> slip (c), and pyramidal <c + a> slip (d) before and after DPD
Fig.7  Schematics of orientation compatibility factor (ω) (bd—slip direction of the dislocation, bt —twin direction, nd—normal direction of the slip plane of the dislocation, nt—normal direction of the twin plane, ϕ—included angle between the normal direction of the twin plane and the normal direction of the slip plane, κ—included angle between the twin direction and the slip direction)
(a) stereogram (b) planar graph
Fig.8  EBSD maps of twins and the choose of twin variants (The dots represent the six possible twin variants (V), and the rectangles represent the actual twin variants initiated (M))
(a) twin A (b) twin B (c) twin C (d) twin D
TwinTwinmm'ω
variant
BasalPrismaticPyramidalPyramidalBasalPrismaticPyramidalPyramidal
<a><a><a><a + c><a><a><a><c + a>
AV10.4310.5820.4970.7160.6240.1480.2050.285*0.170
V20.0130.1210.4530.4560.8330.0310.0510.0750.101
V30.2820.0390.2010.1950.8250.0100.0290.0350.253
V40.4460.3550.6510.7410.7890.0670.2180.1820.387
V50.0160.8110.3390.6740.4700.1040.1510.1980.099
V60.2700.9750.1900.6330.3400.1500.0850.2950.068
BV10.2140.5610.6750.8610.3140.1320.1490.0920.120
V20.0130.9210.1450.4730.5460.1260.0650.1950.094
V30.1200.2310.7200.7420.6110.0530.3190.2600.163
V40.4830.1570.6680.6590.4700.0420.1970.2580.085
V50.0630.4300.2240.2960.9690.0580.0890.1160.203
V60.3380.4540.6780.8130.3000.1030.3010.405*0.030
CV10.2150.4060.6440.7600.6260.0820.1580.1160.208
V20.0060.8240.2850.6450.5010.2270.0860.0990.076
V30.0930.1790.5880.6000.6510.0850.1780.2380.106
V40.4860.0330.4480.4090.7210.0090.1100.1280.177
V50.0600.0480.2340.2250.7700.0200.0410.0630.142
V60.2990.7830.4780.7950.5230.2280.1450.316*0.089
DV10.2160.7410.5670.8520.5050.3360.1190.1420.104
V20.3540.0790.1540.1690.8140.0360.0310.0680.137
V30.0180.1080.6310.6060.6040.0490.1320.2020.124
V40.1340.0370.5420.4940.6900.0140.1560.2170.107
V50.4790.8550.1940.5800.4200.3880.0410.233*0.076
V60.0610.4900.6790.8310.5710.1910.1960.1790.090
Table 3  Selection parameters of twin variants of pure Ti
1 Fu J, Ding H, Huang Y, et al. Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion [J]. J. Mater. Res. Technol., 2015, 4: 2
doi: 10.1016/j.jmrt.2014.10.006
2 Li X M, Sun W L, Han Y, et al. Preparation of Ti(C x N1 - x ) thick films on titanium by plasma electrolytic carbonitriding [J]. Acta Metall. Sin., 2008, 44: 1105
李新梅, 孙文磊, 憨 勇 等. 纯钛表面电解液微弧碳氮化制备碳氮化钛厚膜 [J]. 金属学报, 2008, 44: 1105
3 Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. Int. Mater. Rev., 1967, 12: 169
doi: 10.1179/imr.1967.12.1.169
4 Groves G W, Kelly A. Independent slip systems in crystals [J]. Philos. Mag., 1963, 8: 877
doi: 10.1080/14786436308213843
5 Mises R V. Mechanik der plastischen formänderung von kristallen [J]. Z. Angew. Math. Mech., 1928, 8: 161
doi: 10.1002/zamm.19280080302
6 Huang W, Wang Y, Li Z R, et al. Influences of temperature and strain rate on deformation twinning of polycrystalline titanium [J]. Chin. J. Nonferrous. Met., 2008, 18: 1440
黄 文, 汪 洋, 李子然 等. 温度和应变率对多晶纯钛孪晶变形的影响 [J]. 中国有色金属学报, 2008, 18: 1440
7 Chichili D R, Ramesh K T, Hemker K J. The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling [J]. Acta Mater., 1998, 46: 1025
doi: 10.1016/S1359-6454(97)00287-5
8 Choi S W, Won J W, Lee S, et al. Deformation twinning activity and twin structure development of pure titanium at cryogenic temperature [J]. Mater. Sci. Eng., 2018, A738: 75
9 Xu F, Zhang X Y, Ni H T, et al. {11 2 ¯ 4} deformation twinning in pure Ti during dynamic plastic deformation [J]. Mater. Sci. Eng., 2012, A541: 190
10 Gurao N P, Kapoor R, Suwas S. Deformation behaviour of commercially pure titanium at extreme strain rates [J]. Acta Mater., 2011, 59: 3431
doi: 10.1016/j.actamat.2011.02.018
11 Zherebtsov S V, Dyakonov G S, Salem A A, et al. Formation of nanostructures in commercial-purity titanium via cryorolling [J]. Acta Mater., 2013, 61: 1167
doi: 10.1016/j.actamat.2012.10.026
12 Li Q, Xu Y B, Bassim M N. Dynamic mechanical behavior of pure titanium [J]. J. Mater. Process. Technol., 2004, 155-156: 1889
doi: 10.1016/j.jmatprotec.2004.04.327
13 Tao N R, LU K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals [J]. J. Mater. Sci. Technol., 2007, 23: 771
doi: 10.1179/174328407X185802
14 Li Y S, Zhang Y, Tao N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Mater., 2009, 57: 761
doi: 10.1016/j.actamat.2008.10.021
15 Guan D K, Wynne B, Gao J H, et al. Basal slip mediated tension twin variant selection in magnesium WE43 alloy [J]. Acta Mater., 2019, 170: 1
doi: 10.1016/j.actamat.2019.03.018
16 Christian J W. Deformation twinning [A]. The Theory of Transformations in Metals and Alloys [M]. Oxford: Elsevier Ltd., 2002: 859
17 Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys [J]. Acta Metall. Mater., 1993, 41: 2611
doi: 10.1016/0956-7151(93)90130-K
18 Reid C N, Gilbert A, Hahn G T. Twinning, slip and catastrophic flow in niobium [J]. Acta Metall., 1966, 14: 975
doi: 10.1016/0001-6160(66)90218-5
19 Wang L, Yang Y, Eisenlohr P, et al. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium [J]. Metall. Mater. Trans., 2009, 41A: 421
20 Chun Y B, Yu S H, Semiatin S L, et al. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium [J]. Mater. Sci. Eng., 2005, A398: 209
21 Lee M S, Jo A R, Hwang S K, et al. The role of strain rate and texture in the deformation of commercially pure titanium at cryogenic temperature [J]. Mater. Sci. Eng., 2021, A827: 142042
22 Won J W, Lee J H, Jeong J S, et al. High strength and ductility of pure titanium via twin-structure control using cryogenic deformation [J]. Scr. Mater., 2020, 178: 94
doi: 10.1016/j.scriptamat.2019.11.009
23 Zeng Z P, Zhang Y S, Jonsson S. Deformation behaviour of commercially pure titanium during simple hot compression [J]. Mater. Des., 2009, 30: 3105
doi: 10.1016/j.matdes.2008.12.002
24 Dahlgren S D, Nicholson W L, Merz M D, et al. Microstructural analysis and tensile properties of thick copper and nickel sputter deposits [J]. Thin Solid Films, 1977, 40: 345
doi: 10.1016/0040-6090(77)90136-5
25 Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Metall. Trans., 1981, 12A: 409
26 Qin H, Jonas J J, Yu H B, et al. Initiation and accommodation of primary twins in high-purity titanium [J]. Acta Mater., 2014, 71: 293
doi: 10.1016/j.actamat.2014.03.025
27 Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
28 Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility [J]. Metall. Mater. Trans., 2002, 33A: 813
29 Luster J, Morris M A. Compatibility of deformation in two-phase Ti Al alloys: Dependence on microstructure and orientation relationships [J]. Metall. Mater. Trans., 1995, 26A: 1745
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!