Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (9): 1129-1140    DOI: 10.11900/0412.1961.2021.00079
Research paper Current Issue | Archive | Adv Search |
Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy
FENG Di1(), ZHU Tian1, ZANG Qianhao1, LEE Yunsoo2,3, FAN Xi4, ZHANG Hao4
1.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.Metallic Materials Division, Korea Institute of Materials Science, Changwon 51508, Korea
3.Department of Materials Science and Engineering, Inha University, Incheon 22212, Korea
4.Jiangsu Haoran Spray Forming Alloy Co., Ltd., Zhenjiang 212009, China
Cite this article: 

FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy. Acta Metall Sin, 2022, 58(9): 1129-1140.

Download:  HTML  PDF(4665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Si multicomponent alloys are commonly used in automotive and aerospace fields owing to their excellent castability, good wear resistance, and low coefficient of thermal expansion. After adding Cu and Mg followed by appropriate heating, Al2Cu, AlCuSiMg, or Mg2Si phases precipitate in an α-Al matrix. Hypereutectic AlSiCuMg alloys have been used in wear-resistant products, such as engine cylinders, pistons, and air-conditioning rotors, owing to the hardening effect of Si particles and the solid solution strengthening and precipitation strengthening effects of Cu and Mg. The evolution behaviors of secondary phases and the grains of the spray-formed Al25Si4Cu1Mg (mass fraction, %) alloy were examined via OM, XRD, SEM + EBSD, TEM, hardness tests, and phase diagram calculations. The results showed that the hot extrusion microstructure of spray-formed hypereutectic AlSi alloys comprises equiaxed α-Al, proeutectic Si, eutectic Si, eutectic AlCuSiMg, a eutectic Al2Cu phase, and a low volume fraction Fe-bearing phase at the micron level but without a lamellar morphology. α-Al contained both micro-nano and nano-sized Al2Cu phases precipitates. Over the temperature range of 475-495oC, the precipitated Al2Cu phase and some of the eutectic Al2Cu phase redissolved, and the residual Al2Cu phase concentrated to a Fe-bearing phase and coarsened. The volume fraction and size of the AlCuSiMg phase increased. However, when solution-treated at less than 515oC, the volume fraction of the AlCuSiMg phase began to decrease, and no overburning structure was observed. When the solution temperature exceeded 515oC, the incipient melting of the nonequilibrium eutectic phase increased with increasing solution temperature. The main characteristics of the overburning structure were the network eutectic and grain boundary broadening. The hardness of the spray-formed Al25Si4Cu1Mg alloy was dependent on five factors: the solid solubility of solute atoms, the volume fraction of the residual second phase, the grain size of α-Al, the scale of the Si phase, and the incipient melting of the nonequilibrium eutectic phase.

Key words:  spray forming      hypereutectic alloy      AlSiCuMg alloy      solution      incipient melting     
Received:  25 February 2021     
ZTFLH:  TG166.3  
Fund: National Natural Science Foundation of China(51801082);Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province(202010289019Z)
About author:  FENG Di, associate professor, Tel: (0511)84401188, E-mail: difeng1984@just.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00079     OR     https://www.ams.org.cn/EN/Y2022/V58/I9/1129

Fig.1  DSC curves of spray-formed Al25Si4Cu1Mg alloy after hot extrusion (a) and partial enlarged drawing of Fig.1a (b)
Fig.2  XRD spectra of Al25Si4Cu1Mg alloy
Fig.3  SEM images of spray-formed Al25Si4Cu1Mg alloy
(a-c) as-sprayed (Fig.3c is the detail of the box in Fig.3b) (d-f) as-extruded
Fig.4  OM images of microstructures of spray-formed Al25Si4Cu1Mg alloy treated by different solution temperatures (solution time is 2 h)
(a) 475oC (b) 495oC (c) 515oC (d) 535oC (e) 555oC
Fig.5  SEM images of microstructures of spray-formed Al25Si4Cu1Mg alloy treated by different solution temperatures (solution time is 2 h)
(a) 495oC (b) 515oC (c, e) 535oC (d, f) 555oC
Fig.6  The hardness comparison between different solution treatments
(a) hardness of different solution temperatures (solution time is 2 h)
(b) hardness of different solution time (solution temperature is 515℃)
Fig.7  Local misoritations (a, c, e) and secondary electron images (b, d, f) of microstructures under different solution temperatures (The grain boundary colored by black indicate the misorientation larger than 15°. The grain boundary colored by red indicate the misorientation is in the range of 2°~15°. Solution time is 2 h)
(a, b) 475oC (c, d) 515oC (e, f) 535oC
Fig.8  The vertical section of Al25Si4Cu1Mg phase diagram based on FactSage software (Normal to the cross sectional surface)
1 Vandersluis E, Ravindran C. Effects of solution heat treatment time on the as-quenched microstructure, hardness and electrical conductivity of B319 aluminum alloy [J]. J. Alloys Compd., 2020, 838: 155577
doi: 10.1016/j.jallcom.2020.155577
2 Sadeghi I, Wells M A, Esmaeili S. Effect of particle shape and size distribution on the dissolution behavior of Al2Cu particles during homogenization in aluminum casting alloy Al-Si-Cu-Mg [J]. J. Mater. Process. Technol., 2018, 251: 232
doi: 10.1016/j.jmatprotec.2017.08.042
3 Vieira A C, Pinto A M, Rocha L A, et al. Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05 M NaCl [J]. Electrochim. Acta, 2011, 56: 3821
doi: 10.1016/j.electacta.2011.02.044
4 Wang Y J, Liao H C, Wu Y N, et al. Effect of Si content on microstructure and mechanical properties of Al-Si-Mg alloys [J]. Mater. Des., 2014, 53: 634
doi: 10.1016/j.matdes.2013.07.067
5 Wu Y N, Liao H C, Zhou K X. Effect of minor addition of vanadium on mechanical properties and microstructures of as-extruded near eutectic Al-Si-Mg alloy [J]. Mater. Sci. Eng., 2014, A602: 41
6 Liao H C, Wu Y N, Ding K. Hardening response and precipitation behavior of Al-7%Si-0.3%Mg alloy in a pre-aging process [J]. Mater. Sci. Eng., 2013, A560: 811
7 Giovanni M T D, Mørtsell E A, Saito T, et al. Influence of Cu addition on the heat treatment response of A356 foundry alloy [J]. Mater. Today Commun., 2019, 19: 342
doi: 10.1016/j.mtcomm.2019.02.013
8 Hwang J Y, Banerjee R, Doty H W, et al. The effect of Mg on the structure and properties of Type 319 aluminum casting alloys [J]. Acta Mater., 2009, 57: 1308
doi: 10.1016/j.actamat.2008.11.021
9 Han Y, Samuel A M, Doty H W, et al. Optimizing the tensile properties of Al-Si-Cu-Mg 319-type alloys: Role of solution heat treatment [J]. Mater. Des., 2014, 58: 426
doi: 10.1016/j.matdes.2014.01.060
10 Zhang J Y, Zuo L J, Feng J, et al. Effect of thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni-Mg alloy produced by different casting technologies [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1717
doi: 10.1016/S1003-6326(20)65333-X
11 Lasa L, Rodriguez-Ibabe J M. Evolution of the main intermetallic phases in Al-Si-Cu-Mg casting alloys during solution treatment [J]. J. Mater. Sci., 2004, 39: 1343
doi: 10.1023/B:JMSC.0000013895.72084.c9
12 Mohamed A M A, Samuel F H, Al kahtani S. Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al-Si-Cu-Mg cast alloys [J]. Mater. Sci. Eng., 2012, A543: 22
13 Lombardi A, Ravindran C, MacKay R. Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method [J]. Mater. Sci. Eng., 2015, A633: 125
14 Toda H, Nishimura T, Uesugi K, et al. Influence of high-temperature solution treatments on mechanical properties of an Al-Si-Cu aluminum alloy [J]. Acta Mater., 2010, 58: 2014
doi: 10.1016/j.actamat.2009.11.044
15 Luna I A, Molinar H M, Román M J C, et al. Improvement of the tensile properties of an Al-Si-Cu-Mg aluminum industrial alloy by using multi stage solution heat treatments [J]. Mater. Sci. Eng., 2013, A561: 1
16 Lin G Y, Tan X, Feng D, et al. Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy [J]. Int. J. Min., Met., Mater., 2019, 26: 1013
17 Zhang J Y, Zuo L J, Feng J, et al. Effect of thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni-Mg alloy produced by different casting technologies [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1717
doi: 10.1016/S1003-6326(20)65333-X
18 Feng D, Han Z J, Li J C, et al. Evolution behavior of primary phase during pre-heat treatment before deformation for spray formed 7055 aluminum alloy [J]. Rare Met. Mater. Eng., 2020, 49: 4253
冯 迪, 韩仲杰, 李吉臣 等. 喷射成形7055铝合金初生相在形变前预热处理中的演变行为 [J]. 稀有金属材料与工程, 2020, 49: 4253
19 Hu Y S, Feng D, Zhou, J D, et al. Constitutive equation and thermal processing map of spray formed AlSi25Cu4Mg wear resistant alloy [J]. Mater. Rep., 2020, 34: 10120
胡余生, 冯 迪, 周建党 等. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图 [J]. 材料导报, 2020, 34: 10120
20 Zang Q H, Feng Di, Lee Y S, et al. Microstructure and mechanical properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy strip fabricated by twin roll casting and hot rolling [J]. J. Alloys Compd., 2020, 847: 156481
doi: 10.1016/j.jallcom.2020.156481
21 Zhang J S, Xiong B Q, Cui H. Spray Forming Rapid Solidification Technology: Principles and Applications [M]. Beijing: Science Press, 2008: 1
张济山, 熊柏清, 崔 华. 喷射成形快速凝固技术—原理与应用 [M]. 北京: 科学出版社, 2008: 1
22 Samuel A M, Gauthier J, Samuel F H. Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment [J]. Metall. Mater. Trans., 1996, 27A: 1785
23 Han Y M, Samuel A M, Samuel F H, et al. Effect of solution heat treatment type on the dissolution of copper phases in Al-Si-Cu-Mg type alloys [J]. AFS Trans., 2008, 116: 79
24 Han Y M, Samuel A M, Samuel F H, et al. Dissolution of Al2Cu phase in non-modified and Sr modified 319 type alloys [J]. Int. J. Cast Met. Res., 2008, 21: 387
doi: 10.1179/136404608X347662
25 Vandersluis E, Andilab B, Ravindran C, et al. In-situ characterization of the solution heat treatment of B319 aluminum alloy using X-ray diffraction and electron microscopy [J]. Mater. Charact., 2020, 167: 110499
doi: 10.1016/j.matchar.2020.110499
26 Wang F, Gu Y L, Duan X J, et al. The study of spray deposited hyper-eutectic Al-Si alloy [J]. Acta Metall. Sin., 1999, 35: 121
王 锋, 顾英利, 段先进 等. 喷射成形过共晶Al-Si合金的研究 [J]. 金属学报, 1999, 35: 121
27 Samuel A M, Doty H W, Valtierra S, et al. Relationship between tensile and impact properties in Al-Si-Cu-Mg cast alloys and their fracture mechanisms [J]. Mater. Des., 2014, 53: 938
doi: 10.1016/j.matdes.2013.07.021
28 Feng D, Wang G Y, Chen H M, et al. Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy [J]. Met. Mater. Int., 2018, 24: 195
doi: 10.1007/s12540-017-7324-2
29 Feng D, Zhang X M, Liu S D, et al. Effect of grain size on hot deformation behavior of a new high strength aluminum alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2104
冯 迪, 张新明, 刘胜胆 等. 晶粒尺寸对新型高强铝合金热变形行为的影响 [J]. 稀有金属材料与工程, 2016, 45: 2104
30 Zang Q H, Yu H S, Lee Y S, et al. Hot deformation behavior and microstructure evolution of annealed Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy [J]. J. Alloys Compd., 2018, 763: 25
doi: 10.1016/j.jallcom.2018.05.307
31 Wu Y N, Liao H C, Yang J, et al. Effect of Si content on dynamic recrystallization of Al-Si-Mg alloys during hot extrusion [J]. J. Mater. Sci. Technol., 2014, 30: 1271
doi: 10.1016/j.jmst.2014.07.011
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[3] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[4] ZHANG Weidong, CUI Yu, LIU Li, WANG Wenquan, LIU Rui, LI Rui, WANG Fuhui. Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC[J]. 金属学报, 2023, 59(11): 1475-1486.
[5] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[7] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[8] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[9] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[10] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[11] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[12] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[13] LI Changji,ZOU Minjie,ZHANG Lei,WANG Yuanming,WANG Sucheng. High-Resolution X-Ray Diffraction Analysis of Epitaxial Films[J]. 金属学报, 2020, 56(1): 99-111.
[14] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[15] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
No Suggested Reading articles found!