Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (3): 311-323    DOI: 10.11900/0412.1961.2021.00185
Overview Current Issue | Archive | Adv Search |
Research Progress of a Novel Martensitic Heat-Resistant Steel G115
HE Huansheng1, YU Liming1(), LIU Chenxi1, LI Huijun1, GAO Qiuzhi2, LIU Yongchang1()
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2.School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
Cite this article: 

HE Huansheng, YU Liming, LIU Chenxi, LI Huijun, GAO Qiuzhi, LIU Yongchang. Research Progress of a Novel Martensitic Heat-Resistant Steel G115. Acta Metall Sin, 2022, 58(3): 311-323.

Download:  HTML  PDF(2554KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Improving the steam temperature and the pressure of the boiler applied in the thermal power could enhance the coal-fired efficiency and reduce the emission of harmful gases. Due to the dual impact of dwindling fossil resources and an exacerbated global greenhouse effect, it is critical to develop new heat-resistant boiler materials for ultra super-critical (USC) units at temperatures of 650oC and higher. With great thermal conductivity, good fatigue resistance, and low cost, martensitic heat-resistant steel G115, based on P92 steel applied in 600oC USC units, is a promising steel to be applied to this among all candidate materials. This paper introduces the main chemical composition and the microstructure feature of G115 steel, and the research progress in the areas of microstructure stability, creep performance, fatigue resistance, steam oxidation resistance, and industrial pipe production are summarized, with a focus on the role of Cu-rich phase in G115 steel. Finally, some key points on G115 steel are proposed to provide ideas for future research.

Key words:  G115 steel      ultra super-critical (USC) units      microstructure      service performance     
Received:  07 May 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(U1960204)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00185     OR     https://www.ams.org.cn/EN/Y2022/V58/I3/311

SteelCCrWMoCoMnV
G1150.06-0.108.0-9.52.5-3.5-2.5-3.50.20-0.800.10-0.30
SAVE12AD0.08-0.138.5-9.52.0-3.5-1.0-3.50.20-0.700.15-0.30
MARBN0.0789.03.0-3.00.30.16
P920.07-0.148.5-9.01.5-2.00.30-0.60-0.30-0.600.15-0.25
SteelSiCuNbNBNiTa / Nd
G1150.10-0.500.80-1.200.03-0.070.006-0.0100.010-0.016≤ 0.03-
SAVE12AD0.3-0.060.0080.010--
MARBN0.05-0.50-0.03-0.080.005-0.0400.003-0.015≤ 0.500.003-0.06
P92≤ 0.50-0.04-0.090.030-0.0700.0010-0.0060≤ 0.40-
Table 1  Chemical compositions of P92, MARBN, SAVE12AD, and G115 steels[19,26,29]
Fig.1  Schematic of the morphology and distribution of tempered martensite and precipitations in G115 steel
Fig.2  Variations of room temperature and high temperature tensile strength (a) and size of martensitic lath/subgrains, M23C6, and Laves phase (b) for G115 steel and P92 steel aging at 650oC for different time[42-46]
Fig.3  Morphologies and components of Cu-rich phase in initial state for G115 steel
Fig.4  HAADF-STEM image (a) and EDS element maps (b) of the distribution of Cu-rich particles and Laves phase in G115 steel after aging at 650oC for 1000 h
Fig.5  Distributions of the Laves phase and M23C6 in G115 steel during aging at 750oC[52]
Fig.6  Comparisons of creep life among G115, T91, P92, 3%Co-P92, and MARBN steels at 650oC[56,57]
Fig.7  Creep crack morphologies under applied stresses of 250 MPa (a), 230 MPa (b), and 150 MPa (c); crack propagation model corresponding to Figs.7a and b (d); crack propagation model corresponding to Fig.7c (e)[60]
Fig.8  Mechanism of creep fatigue crack propagation
Fig.9  Comparisons of crack growth rate at different temperatures[65] (Stress intensity factor range (ΔK) means the stress field intensity at crack tip, which is attained by ΔK = Y(a / w)σa, Y(a / w) is functions related to pattern geometry, a is the length of cracks, w is the width of specimen, σ is the creep stress)
NumberCCrWCoMnVSi
10.07-0.098.5-9.52.8-3.32.8-3.5≤ 0.700.18-0.25≤ 0.30
20.08-0.128.0-10.02.5-3.22.6-3.20.60-1.000.15-0.30≤ 0.50
NumberCuNbNBTiPS
1≤ 0.500.04-0.080.007-0.0080.011-0.014≤ 0.001≤ 0.002≤ 0.001
20.70-1.100.02-0.100.005-0.0100.002-0.010-≤ 0.010≤ 0.010
Table 2  Chemical compositions of G115 steel argon arc welding wire[75,76]

Welding method

Room temperature tensile strength

MPa

650oC

tensile strength

MPa

Impact energy absorbed at heat affected zone / J

Impact energy absorbed at

weld zone / J

SMAW7232403851
CMT + P7392775362
Table 3  Comparisons of mechanical properties at welded joint with different welding methods[77]
1 Wu Z Q , Bai Y , Ma L T , et al . Research and development of martensitic creep-resistant steels for 650oC [J]. Iron Steel, 2015, 50(5): 1
吴增强, 白 银, 马龙腾 等 . 650℃马氏体耐热钢研究及其进展 [J]. 钢铁, 2015, 50(5): 1
2 Sklenicka V , Kucharova K , Svobodova M , et al . The effect of a prior short-term ageing on mechanical and creep properties of P92 steel [J]. Mater. Charact., 2018, 136: 388
3 Jin X , Zhu B Y , Li Y F , et al . Effect of the microstructure evolution on the high-temperature strength of P92 heat-resistant steel for different service times [J]. Int. J. Press. Vessels Pip., 2020, 186: 104131
4 Masuyama F . History of power plants and progress in heat resistant steels [J]. ISIJ Int., 2001, 41: 612
5 Liu Z D , Chen Z Z , He X K , et al . Systematical innovation of heat resistant materials used for 630~700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
刘正东, 陈正宗, 何西扣 等 . 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
6 Wang J Z , Liu Z D , Bao H S , et al . Study of steel and alloys for ultra-supercritical power plant in China [J]. Iron Steel, 2015, 50(8): 1
王敬忠, 刘正东, 包汉生 等 . 中国超超临界电站锅炉关键材料用钢及合金的研究现状 [J]. 钢铁, 2015, 50(8): 1
7 Chi C Y , Yu H Y , Xie X S . Research and development of austenitic heat-resistant steels for 600oC superheat/reheater tubes of USC power plant boilers [J]. World Iron Steel, 2012, 12(4): 50
迟成宇, 于鸿垚, 谢锡善 . 600℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展 [J]. 世界钢铁, 2012, 12(4): 50
8 Gao Q Z . Phase transformation behaviors and welding of the modified high Cr ferritic heat-resistant steel [D]. Tianjin: Tianjin University, 2012
高秋志 . 新型高Cr铁素体耐热钢相变行为及焊接性 [D]. 天津: 天津大学, 2012
9 Li H . Research on the high temperature oxidation and corrosion properties of new martensitic heat resistant steel [D]. Harbin: Harbin Engineering University, 2019
李 洪 . 新型马氏体耐热钢的高温氧化和腐蚀性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019
10 Kim B K , Tan L , Xu C , et al . Microstructural evolution of NF709 (20Cr-25Ni-1.5MoNbTiN) under neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 229
11 Zhang Z , Hu Z F , Tu H Y , et al . Microstructure evolution in HR3C austenitic steel during long-term creep at 650oC [J]. Mater. Sci. Eng., 2017, A681: 74
12 Dudova N , Mishnev R , Kaibyshev R . Creep behavior of a 10%Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650 oC [J]. Mater. Sci. Eng., 2019, A766: 138353
13 Rojas D , Garcia J , Prat O , et al . Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650oC [J]. Mater. Sci. Eng., 2011, A528: 1372
14 Yin F S , Jung W S , Chung S H . Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel [J]. Scr. Mater., 2007, 57: 469
15 Gao Q Z , Dong X , Li C , et al . Microstructure and oxidation properties of 9Cr-1.7W-0.4Mo-Co ferritic steel after isothermal aging [J]. J. Alloys Compd., 2015, 651: 537
16 Liu Z , Xie X . The Chinese 700oC A-USC development program [A]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants [M]. United Kingdom: Woodhead Publishing, 2017: 715
17 Xiao B , Xu L Y , Cayron C , et al . Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel [J]. Acta Mater., 2020, 195: 199
18 Abe F . New martensitic steels [A]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants [M]. United Kingdom: Woodhead Publishing, 2017: 323
19 Liu Z D , Cheng S C , Bao H S , et al . Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof [P] Chin Pat., 201210574445.1, 2013
刘正东, 程世长, 包汉生 等 . 蒸汽温度超超临界火电机组用钢及制备方法 [P]. 中国专利, 201210574445.1, 2013)
20 Liu C X , Mao C L , Cui L , et al . Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels [J]. Acta Metall. Sin., 2021, 57: 1521
刘晨曦, 毛春亮, 崔 雷 等 . 低活化铁素体/马氏体钢组织调控及其固相连接研究进展 [J]. 金属学报, 2021, 57: 1521
21 Wang H , Yan W , van Zwaag S , et al . On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
22 Xu Y T , Nie Y H , Wang M J , et al . The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
23 Faulkner R G , Williams J A , Sanchez E G , et al . Influence of Co, Cu and W on microstructure of 9%Cr steel weld metals [J]. Mater. Sci. Technol., 2003, 19: 347
24 Helis L , Toda Y , Hara T , et al . Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants [J]. Mater. Sci. Eng., 2009, A510-511: 88
25 Liu Z , Wang X T , Dong C . Effect of boron on G115 martensitic heat resistant steel during aging at 650oC [J]. Mater. Sci. Eng., 2020, A787: 139529
26 Wen X L , Zhang Q Q , Chen L . A state-of-the-art review of chemical component study of the candidate steel for 650oC ultra-supercritical boiler tube [J]. Mater. Rev., 2018, 32: 2167
文新理, 章清泉, 陈 列 . 650℃第三代超超临界锅炉管候选钢种的化学成分研究现状 [J]. 材料导报, 2018, 32: 2167
27 Chi C Y , Yu H Y , Dong J X , et al . The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application [J]. Prog. Nat. Sci.: Mater. Int., 2012, 22: 175
28 Tan S P , Wang Z H , Cheng S C , et al . Effect of Cu content on aging precipitation behaviors of Cu-Rich Phase in Fe-Cr-Ni alloy [J]. J. Iron Steel Res. Int., 2010, 17: 63
29 Zeng Y P , Jia J D , Cai W H , et al . Effect of long-term service on the precipitates in P92 steel [J]. Int. J. Miner. Metall. Mater., 2018, 25: 913
30 Li J R , Zhang C L , Jiang B , et al . Effect of large-size M23C6-type carbides on the low-temperature toughness of martensitic heat-resistant steels [J]. J. Alloys Compd., 2016, 685: 248
31 Xu Y T , Zhang X Y , Tian Y B , et al . Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging [J]. Mater. Charact., 2016, 111: 122
32 Pandey C , Mahapatra M M , Kumar P , et al . Some studies on P91 steel and their weldments [J]. J. Alloys Compd., 2018, 743: 332
33 Abe F , Taneike M , Sawada K . Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides [J]. Int. J. Press. Vessels Pip., 2007, 84: 3
34 Kipelova A , Kaibyshev R , Belyakov A , et al . Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions [J]. Mater. Sci. Eng., 2011, A528: 1280
35 Yang L X . Multi-scale characterization of Cu and correlation study on composition-structure-properties of ultra supercritical heat resistant steel G115 [D]. Beijing: Central Iron & Steel Research Institute, 2018
杨丽霞 . 超超临界耐热钢G115中Cu的跨尺度表征及其成分-组织结构-性能相关性研究 [D]. 北京: 钢铁研究总院, 2018
36 Hättestrand M , Andrén H O . Microstructural development during ageing of an 11% chromium steel alloyed with copper [J]. Mater. Sci. Eng., 2001, A318: 94
37 Ma L T , Bai Y , Liu Z D . The Laves phase evolution of 9Cr-3W-3Co steel under long term isothermal treatment [J]. Steel Res. Int., 2017, 88: 1600412
38 Kipelova A , Belyakov A , Kaibyshev R . Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K [J]. Mater. Sci. Eng., 2012, A532: 71
39 Rojas D , Garcia J , Prat O , et al . 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650oC [J]. Mater. Sci. Eng., 2011, A528: 5164
40 Ma L T , Wang Y F , Di G B . Study on the microstructure evolution and tungsten content optimization of 9Cr-3W-3Co steel [J]. Materials, 2018, 11: 2080
41 Liu Z , Liu Z D , Wang X T , et al . Investigation of the microstructure and strength in G115 steel with the different concentration of tungsten during creep test [J]. Mater. Charact., 2019, 149: 95
42 Yan P , Liu Z D , Bao H S , et al . Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, A588: 22
43 Liu Z , Liu Z D , Wang X T , et al . The microstructural evolution and mechanical property in G115 steels during long-term aging at 650oC [J]. Mater. Res. Express, 2019, 6: 116
44 Guo X F , Jiang Y , Gong J M , et al . The influence of long-term thermal exposure on microstructural stabilization and mechanical properties in 9Cr-0.5Mo-1.8W-VNb heat-resistant steel [J]. Mater. Sci. Eng., 2016, A672: 194
45 Saini N , Mulik R S , Mahapatra M M . Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel [J]. Mater. Sci. Eng., 2018, A716: 179
46 Duan P , Liu Z D , Li B , et al . Study on microstructure and mechanical properties of P92 steel after high-temperature long-term aging at 650oC [J]. High Temp. Mater. Processes, 2020, 39: 545
47 Gao Q Z , Zhang Y N , Zhang H L , et al . Precipitates and particles coarsening of 9Cr-1.7W-0.4Mo-Co ferritic heat-resistant steel after isothermal aging [J]. Sci. Rep., 2017, 7: 5859
48 Liu Z , Liu Z D , Wang X T , et al . Evolution of the microstructure in aged G115 steels with the different concentration of tungsten [J]. Mater. Sci. Eng., 2018, A729: 161
49 Xiao B , Xu L Y , Zhao L , et al . Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel [J]. Mater. Sci. Eng., 2018, A711: 434
50 Heo Y U , Kim Y K , Kim J S , et al . Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy [J]. Acta Mater., 2013, 61: 519
51 Isheim D , Gagliano M S , Fine M E , et al . Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale [J]. Acta Mater., 2006, 54: 841
52 Liang Y , Yan W , Shi X B , et al . On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures [J]. J. Mater. Sci. Technol., 2021, 85: 129
53 Yan P , Liu Z D . Toughness evolution of 9Cr-3W-3Co martensitic heat resistant steel during long time aging [J]. Mater. Sci. Eng., 2016, A650: 290
54 Zhang H J , Zhou R C , Tang L Y , et al . Study on microstructure and mechanical properties of P92 steel aged at 650oC [J]. Proc. CSEE, 2009, 29(suppl.): 174
张红军, 周荣灿, 唐丽英 等 . P92钢650℃时效的组织性能研究 [J]. 中国电机工程学报, 2009, 29(): 174
55 Isik M I , Kostka A , Eggeler G . On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels [J]. Acta Mater., 2014, 81: 230
56 Yu Y H , Liu Z D , Zhang C , et al . Correlation of creep fracture lifetime with microstructure evolution and cavity behaviors in G115 martensitic heat-resistant steel [J]. Mater. Sci. Eng., 2020, A788: 139468
57 Mishnev R , Dudova N , Fedoseeva A , et al . Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel [J]. Mater. Sci. Eng., 2016, A678: 178
58 Xiao B , Xu L Y , Zhao L , et al . Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep [J]. Mater. Sci. Eng., 2017, A707: 466
59 Xiao B , Xu L Y , Tang Z X , et al . A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep [J]. Mater. Sci. Eng., 2019, A747: 161
60 Xiao B , Xu L Y , Zhao L , et al . Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range [J]. Mater. Sci. Eng., 2019, A743: 280
61 Jiang C C , Dong Z , Song X L , et al . Long-term creep rupture strength prediction for a new grade of 9Cr martensitic creep resistant steel (G115)—An application of a new tensile creep rupture model [J]. J. Mater. Res. Technol., 2020, 9: 5542
62 Jing H Y , Luo Z X , Xu L Y , et al . Low cycle fatigue behavior and microstructure evolution of a novel 9Cr-3W-3Co tempered martensitic steel at 650 °C [J]. Mater. Sci. Eng., 2018, A731: 394
63 Luo Z X . Low cycle fatigue behavior and microstructure evolution of G115 martensitic steel at high temperature [D]. Tianjin: Tianjin University, 2018
罗振轩 . G115马氏体耐热钢高温低周疲劳行为及微观组织研究 [D]. 天津: 天津大学, 2018
64 Tang Z X , Jing H Y , Xu L Y , et al . Temperature effect on dwell-fatigue crack propagation behavior of novel tempered martensitic ferritic steel G115 [J]. Eng. Fract. Mech., 2020, 237: 107250
65 Tang Z X , Jing H Y , Xu L Y , et al . Creep-fatigue crack growth behavior of G115 steel under different hold time conditions [J]. Int. J. Fatigue, 2018, 116: 572
66 Xu L Y , Rong J Y , Zhao L , et al . Creep-fatigue crack growth behavior of G115 steel at 650 oC [J]. Mater. Sci. Eng., 2018, A726: 179
67 Tang Z X , Jing H Y , Xu L Y , et al . Investigating crack propagation behavior and damage evolution in G115 steel under combined steady and cyclic loads [J]. Theor. Appl. Fract. Mech., 2019, 100: 93
68 Tang Z X , Jing H Y , Xu L Y , et al . Investigation of creep-fatigue crack growth of G115 steel using a novel damage model [J]. Int. J. Mech. Sci., 2020, 183: 105827
69 Bai Y , Chen Z Z , Liu Z D , et al . Effect of temperature on steam oxidation behavior of G115 steel [J]. J. Iron Steel Res., 2020, 32: 52
白 银, 陈正宗, 刘正东 等 . 蒸汽温度对G115钢氧化行为的影响 [J]. 钢铁研究学报, 2020, 32: 52
70 Liu Z D , Chen Z Z , Bao H S , et al . Development and Engineering of a New Generation of Martensitic Heat Resistant Steel G115 [M]. Beijing: Metallurgical Industry Press, 2020: 263
刘正东, 陈正宗, 包汉生 等 . 新一代马氏体耐热钢G115研发及工程化 [M]. 北京: 冶金工业出版社, 2020: 263
71 Singh Raman R K , Khanna A S , Tiwari R K , et al . Influence of grain size on the oxidation resistance of 2 1 4 Cr-1Mo steel [J]. Oxid. Met., 1992, 37: 1
72 Bai Y , Liu Z D , Xie J X , et al . Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel [J]. Acta Metall. Sin., 2018, 54: 895
白 银, 刘正东, 谢建新 等 . 预氧化处理对G115钢高温蒸气氧化行为的影响 [J]. 金属学报, 2018, 54: 895
73 Shen K , Cai W H , Du S M , et al . Effect of shot peening on high-temperature steam oxidation behavior of martensitic heat-resistant steel [J]. Heat Treat. Met., 2021, 46(2): 66
谌 康, 蔡文河, 杜双明 等 . 喷丸对马氏体耐热钢高温蒸汽氧化行为的影响 [J]. 金属热处理, 2021, 46(2): 66
74 Dong M , Xie X Y , Zhu Y C , et al . Preparation of FeAl penetration layer on G115 and T92 steel surface and its oxidation resistance to high temperature steam [J]. Trans. Mater. Heat Treat., 2021, 42(5): 135
董 猛, 谢逍原, 朱阳存 等 . G115和T92钢表面FeAl渗层制备及其抗高温水蒸汽氧化性能 [J]. 材料热处理学报, 2021, 42(5): 135
75 Liu Z D , Chen Z Z , Bao H S , et al . Argon arc welding wire for heat resistant steel G 115 [P] Chin Pat., 201611250159.4, 2017
刘正东, 陈正宗, 包汉生 等 . G115耐热钢用氩弧焊焊丝 [P]. 中国专利, 201611250159.4, 2017)
76 Li H , She Y T , Li X Y , et al . TIG welding wire of steel for steam temperature ultra supercritical thermal power unit and its preparation method [P]. Chin Pat., 201610961348.2, 2017
李 浩, 佘英堂, 李欣雨 等 . 蒸汽温度超超临界火电机组用钢的TIG焊焊丝及其制备方法 [P]. 中国专利, 201610961348.2, 2017)
77 Xu L Y , Pang H N , Zhao L , et al . Microstructure and mechanical properties of CMT + P welding process on G115 steel [J]. Trans. China Weld. Inst., 2020, 41(8): 1
徐连勇, 庞红宁, 赵 雷 等 . G115钢CMT+P焊接工艺及组织和性能 [J]. 焊接学报, 2020, 41(8): 1
78 Qi X Q , Liu Z H , Li X . Effect of different tempering temperature on the microstructure and properties of G115 steel weld [J]. J. Phys.: Conf. Ser., 2021, 1865: 032023
79 Matsunaga T , Hongo H , Tabuchi M , et al . Suppression of grain refinement in heat-affected zone of 9Cr-3W-3Co-VNb steels [J]. Mater. Sci. Eng., 2016, A655: 168
80 Li L P , Liang J , Zhao L , et al . Effect of PWHT temperature on microstructure and mechanical properties of G115/T92 dissimilar steel welded joint [J]. Heat Treat. Met., 2019, 44(2): 68
李林平, 梁 军, 赵 雷 等 . 焊后热处理温度对G115/T92异种钢接头组织及力学性能的影响 [J]. 金属热处理, 2019, 44(2): 68
81 Li L P , Liang J , Zhao L , et al . Microstructure and mechanical properties of G115/T92 dissimilar welded joints [J]. Trans. Mater. Heat Treat., 2018, 39(9): 138
李林平, 梁 军, 赵 雷 等 . G115/T92异种钢焊接接头的显微组织及力学性能 [J]. 材料热处理学报, 2018, 39(9): 138
82 Yang M H , Zhang Z , Liu Y R , et al . Fine-grain heat affected zone softening of G115/Sanicro25 dissimilar steel welded joints after post-weld heat treatment [J]. Int. J. Press. Vessels Pip., 2020, 188: 104253
83 Xiong J K , Li T , Yuan X J , et al . Improvement in weldment of dissimilar 9% Cr heat-resistant steels by post-weld heat treatment [J]. Metals, 2020, 10: 1321
84 Zhang Y Y , Gou G Q . Microstructure and properties of 9Cr-3W-3Co steel joint by shielded metal arc welding [J]. AIP Adv., 2020, 10: 045034
85 Li T . Study on mechanical characteristics and microstructure of TIG welding on dissimilar 9%Cr heat-resistant steels [D]. Chongqing: Chongqing University, 2020
李 婷 . 异种9%Cr马氏体耐热钢TIG熔化焊组织及性能研究 [D]. 重庆: 重庆大学, 2020
86 Liu Z D . Industrially integrated metallurgical processing of novel G115(R) martensitic heat resistant steel pipes [A]. Proceedings of the 12th Academic Conference on chemical, metallurgical and material engineering, Chinese Academy of Engineering [C]. Zhengzhou, 2018: 348
刘正东 . G115(R)马氏体耐热钢管研制 [A]. 中国工程院化工、冶金与材料工程第十二届学术会议论文集 [C]. 郑州, 2018: 348
87 Lei B W , Li Y Q , Pang H P , et al . Manufacturing technology of novel heat resistant steel G115 large-diameter heavy wall seamless pipe [J]. Met. Funct. Mater., 2020, 27(5): 14
雷丙旺, 李永清, 庞海平 等 . 新型马氏体耐热钢G115大口径厚壁无缝钢管制造技术 [J]. 金属功能材料, 2020, 27(5): 14
88 Cong X Z , Peng X N , Peng X K , et al . Heat treatment for G115 large diameter pipe fittings [J]. Heat Treat. Met., 2021, 46(3): 90
丛相州, 彭杏娜, 彭先宽 等 . G115钢大口径管件的热处理 [J]. 金属热处理, 2021, 46(3): 90
89 Li H Z , Liang J , Xu L Y , et al . Effect of cyclic normalization on microstructure and impact toughness of 9Cr3W3Co steel [J]. Trans. Mater. Heat Treat., 2017, 38(10): 67
李海昭, 梁 军, 徐连勇 等 . 循环正火处理对9Cr3W3Co钢组织及冲击韧性的影响 [J]. 材料热处理学报, 2017, 38(10): 67
90 Ma L T , Liu Z D , Bai Y . Effect of doubled normalization on microstructure and impact toughness of 9Cr3W3Co steel [J]. Heat Treat. Met., 2017, 42(3): 18
马龙腾, 刘正东, 白 银 . 二次正火处理对9Cr3W3Co钢微观组织和冲击韧性的影响 [J]. 金属热处理, 2017, 42(3): 18
91 Peng X N , Cong X Z , Peng X K , et al . Experimental study on hot press bending process for G115 steel [J]. Forg. Stamping Technol., 2021, 46(2): 142
彭杏娜, 丛相州, 彭先宽 等 . G115钢热压弯成形工艺试验研究 [J]. 锻压技术, 2021, 46(2): 142
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!