Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (3): 324-333    DOI: 10.11900/0412.1961.2021.00386
Research paper Current Issue | Archive | Adv Search |
Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution
TANG Yanbing1, SHEN Xinwang1,2, LIU Zhihong2, QIAO Yanxin2(), YANG Lanlan2, LU Daohua1, ZOU Jiasheng2, XU Jing1
1.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Cite this article: 

TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution. Acta Metall Sin, 2022, 58(3): 324-333.

Download:  HTML  PDF(2748KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inconel 718 alloy is a popular material used for additive manufacturing. Corrosion involvement is crucial for its application. The corrosion behaviors of the additive manufacturing Inconel 718 alloy in neutral NaCl solution and acidic solution have been thoroughly investigated and documented. However, information available in the literature regarding the corrosion behaviors of additive manufacturing Inconel 718 alloy in alkaline solution is insufficient. In this paper, the corrosion behavior of Inconel 718 alloy fabricated through selective laser melting (SLM Inconel 718) in NaOH solution was studied using open circuit potential (OCP), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), potentiostats polarization, Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results were compared with a commercial rolled Inconel 718 alloy (R Inconel 718). Pitting corrosion was observed in both SLM Inconel 718 alloy and R Inconel 718 alloy. SLM Inconel 718 alloy has lower activity and corrosion rate compared with R Inconel 718 alloy. Because the passive film formed on the surface of SLM Inconel 718 alloy has a lower content of porous NiO and a higher content of compact Cr2O3, the passive film is more compact; however, the donor/acceptor density is lower in the passive film.

Key words:  additive manufacturing      Inconel 718      selective laser melting      passive film      alkaline solution     
Received:  07 September 2021     
ZTFLH:  TG172.5  
Fund: National Key Research and Development Program of China(2018YFC0309100);High-Tech Ship Project of the Ministry of Industry and Information Technology (No.2018[473]), and Natural Science Foundation for Colleges and Universities of Jiangsu Province(19KJB460015)
About author:  QIAO Yanxin, professor, Tel: 18851407972, E-mail: yxqiao@just.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00386     OR     https://www.ams.org.cn/EN/Y2022/V58/I3/324

AlloyNiCrNbMoTiAlCoCuMnFe
SLM Inconel 71852.5319.005.103.020.960.480.0310.0350.07418.77
R Inconel 71853.2019.205.103.100.900.300.850.250.2916.81
Table 1  Chemical compositions of selective laser melted (SLM) and rolled (R) Inconel 718 alloys[16]
Fig.1  OM (a, c) and SEM (b, d) images of the SLM Inconel 718 (a, b) and R Inconel 718 (c, d)
Fig.2  Open circuit potentials (EOCP) of SLM Inconel 718 and R Inconel 718 in 0.1 mol/L NaOH solution (t—time)
Fig.3  Potentiodynamic polarization curves of SLM Inconel 718 and R Inconel 718 in 0.1 mol/L NaOH solution (E—potential, i—current density)
Fig.4  Surface morphologies of uncorroded (a, b) and corroded (c, d) SLM Inconel 718 (a, c) and R Inconel 718 (b, d) (Inset in Fig.4d shows the partial enlargement of corroded R Inconel 718)
Fig.5  Electrochemical impedance spectroscopic (EIS) data of SLM Inconel 718 and R Inconel 718 in 0.1 mol/L NaOH solution (ZIm—imaginary impedance, ZRe—real impedance, |Z|—imped-ance modulus, f—frequency)
Fig.6  Schematic of equivalent circuit modeling of EIS (Rs—solution resistance, Qf—passive film capacitance, Rf—passive film resistance, Cdl—double layer capacitance, Rct—charge transfer resistance)
Alloy

Rs

Ω·cm2

Qf

10-5 F·cm-2

n

Rf

104 Ω·cm2

Cdl

10-5 F·cm-2

Rct

105 Ω·cm2

SLM Inconel 71813.97 ± 0.056.04 ± 0.450.89 ± 0.015.79 ± 0.113.69 ± 0.193.44 ± 0.08
R Inconel 7189.52 ± 0.058.72 ± 0.100.88 ± 0.013.54 ± 0.104.27 ± 0.292.47 ± 0.09
Table 2  EIS fitted results of the SLM Inconel 718 and R Inconel 718
Fig.7  Current-time curves (a) and double-log plots of current-time (b) of SLM Inconel 718 and R Inconel 718 in 0.1 mol/L NaOH solution (Inset in Fig.7a shows the partial enlargement of current-time curves. k—slope)
Fig.8  Mott-Schottky plots for SLM Inconel 718 and R Inconel 718 in 0.1 mol/L NaOH solution (a), and donor density (Nd) and acceptor density (Na) of passive films and oxides(b) (CSC—capacitance of the space charge layer)
Fig.9  Details of XPS spectra of SLM Inconel 718 (a, c, e, g, i) and R Inconel 718 (b, d, f, h, j) (%—peak area percentage, Ni0—Ni metal, Niox—NiO, Nihy—Ni(OH)2, Fe0—Fe metal, Feox—Fe3O4 and Fe2O3, Fehy—FeOOH and Fe(OH)3, Cr0—Cr metal, Crox—Cr2O3, Crhy—Cr(OH)3, Mo0—Mo metal, Moox—MoO3, Nb0—Nb metal, Nb2+—NbO, Nb5+—Nb2O5)
Fig.10  Depth profiles of the elements of passive films formed on SLM Inconel 718 (a) and R Inconel 718 (b)
Fig.11  Depth distribution of different compositions in the passive film on the surface of SLM Inconel 718 (a) and R Inconel 718 (b)
1 Kong D C , Dong C F , Ni X Q , et al . Corrosion of metallic materials fabricated by selective laser melting [J]. npj Mater. Degrad., 2019, 3: 24
2 Dai N W , Zhang L C , Zhang J X , et al . Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
3 Kong D C , Ni X Q , Dong C F , et al . Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting [J]. Constr. Build. Mater., 2019, 221: 720
4 Revilla R I , Liang J W , Godet S , et al . Local Corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM [J]. J. Electrochem. Soc., 2016, 164: C27
5 Cao G H , Sun T Y , Wang C H , et al . Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018,136: 398
6 Chlebus E , Gruber K , Kuźnicka B , et al . Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mater. Sci. Eng. , 2015, A639: 647
7 Borisov E V , Popovich V A , Popovich A A , et al . Selective laser melting of Inconel 718 under high laser power [J]. Mater. Today, 2020, 30: 784
8 Li L L , Wang Z B , He S Y , et al . Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion [J]. J. Mater. Sci. Technol., 2021, 89: 158
9 Guo P F , Lin X , Li J Q , et al . Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections [J]. Corros. Sci., 2018, 132: 79
10 Hamza H M , Deen K M , Khaliq A , et al . Microstructural, corrosion and mechanical properties of additively manufactured alloys: A review [J]. Crit. Rev. Solid State Mater. Sci., 2022, 47: 46
11 Firoz R , Basantia S K , Khutia N , et al . Effect of microstructural constituents on mechanical properties and fracture toughness of Inconel 718 with anomalous deformation behavior at 650oC [J]. J. Alloys Compd., 2020, 845: 156276
12 Hosseini E , Popovich V A . A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
13 Li H X , Feng S N , Li J H , et al . Effect of heat treatment on the δ phase distribution and corrosion resistance of selective laser melting manufactured Inconel 718 superalloy [J]. Mater. Corros., 2018, 69: 1350
14 Raj B A , Jappes J T W , Khan M A , et al . Studies on heat treatment and electrochemical behaviour of 3D printed DMLS processed nickel-based superalloy [J]. Appl. Phys. , 2019, 125A: 722
15 You X G , Tan Y , Zhao L H , et al . Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy [J]. J. Alloys Compd., 2018, 741: 792
16 Tang Y B , Shen X W , Qiao Y X , et al . Corrosion behavior of a selective laser melted Inconel 718 alloy in a 3.5 wt.% NaCl solution [J]. J. Mater. Eng. Perform., 2021, 30: 5506
17 Zhang L N , Ojo O A . Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy [J]. J. Alloys Compd., 2020, 829: 154455
18 Luo S C , Huang W P , Yang H H , et al . Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
19 Qin T , Lin X , Yu J , et al . Performance of different microstructure on electrochemical behaviors of laser solid formed Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2021, 185: 109392
20 Stefanoni M , Angst U , Elsener B . Local electrochemistry of reinforcement steel-distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
21 Wang D P , Shen J W , Chen Z , et al . Relationship of corrosion behavior between single-phase equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn alloys and their constituents in NaCl solution [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1574
22 Zhu M , Zhang Q , Yuan Y F , et al . Passivation behavior of 2507 super duplex stainless steel in simulated concrete pore solution [J]. J. Mater. Eng. Perform., 2020, 29: 3141
23 Song Q N , Tong Y , Li H L , et al . Corrosion and cavitation erosion resistance enhancement of cast Ni-Al bronze by laser surface melting [J]. J. Iron Steel Res. Int., 2021, doi: 10.1007/s42243-021-00674-3
24 Liu L , Li Y , Wang F H . Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl [J]. Electrochim. Acta, 2007, 52: 7193
25 Fattah-alhosseini A , Vafaeian S . Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements [J]. J. Alloys Compd., 2015, 639: 301
26 Kong D C , Dong C F , Ni X Q , et al . The passivity of selective laser melted 316L stainless steel [J]. Appl. Surf. Sci., 2020, 504: 144495
27 Liu L , Li Y , Wang F H . Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta, 2007, 52: 2392
28 Szklarska-Smialowska Z . Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
29 Qiao Y X , Wang X Y , Yang L L , et al . Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107: 197
30 Nascimento C B , Donatus U , Ríos C T , et al . Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution [J]. J. Mater. Res. Technol., 2020, 9: 13879
31 Feng Z C , Cheng X Q , Dong C F , et al . Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
32 Hakiki N E , Montemor M F , Ferreira M G S , et al . Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel [J]. Corros. Sci., 2000, 42: 687
33 Yao J Z , Macdonald D D , Dong C F . Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods [J]. Corros. Sci., 2019, 146: 221
34 Bakare M S , Voisey K T , Roe M J , et al . X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625 [J]. Appl. Surf. Sci., 2010, 257: 786
35 Shi P , Lv X Z , Zhang J , et al . Corrosion behavior of nickel-based superalloy CMSX-4 in 3.5wt.% NaCl solution [J]. J. Guangxi. Acad. Sci., 2020, 36: 427
史 鹏, 吕仙姿, 张 杰 等 .镍基合金CMSX-4在3.5 wt.% NaCl溶液中的腐蚀行为 [J]. 广西科学院学报, 2020, 36: 427
36 Cwalina K L , Demarest C R , Gerard A Y , et al . Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion [J]. Curr. Opin. Solid State Mater. Sci., 2019, 23: 129
37 Cui Z Y , Chen S S , Dou Y P , et al . Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
38 Luo H , Dong C F , Li X G , et al . The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta., 2012, 64: 211
39 Kong D S , Chen S H , Wang C , et al . A study of the passive films on chromium by capacitance measurement [J]. Corros. Sci., 2003, 45: 747
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[4] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[5] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[6] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[7] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[8] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[9] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[10] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[11] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[12] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[13] LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology[J]. 金属学报, 2023, 59(1): 106-124.
[14] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[15] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
No Suggested Reading articles found!