|
|
Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution |
TANG Yanbing1, SHEN Xinwang1,2, LIU Zhihong2, QIAO Yanxin2( ), YANG Lanlan2, LU Daohua1, ZOU Jiasheng2, XU Jing1 |
1.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
|
Cite this article:
TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution. Acta Metall Sin, 2022, 58(3): 324-333.
|
Abstract Inconel 718 alloy is a popular material used for additive manufacturing. Corrosion involvement is crucial for its application. The corrosion behaviors of the additive manufacturing Inconel 718 alloy in neutral NaCl solution and acidic solution have been thoroughly investigated and documented. However, information available in the literature regarding the corrosion behaviors of additive manufacturing Inconel 718 alloy in alkaline solution is insufficient. In this paper, the corrosion behavior of Inconel 718 alloy fabricated through selective laser melting (SLM Inconel 718) in NaOH solution was studied using open circuit potential (OCP), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), potentiostats polarization, Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results were compared with a commercial rolled Inconel 718 alloy (R Inconel 718). Pitting corrosion was observed in both SLM Inconel 718 alloy and R Inconel 718 alloy. SLM Inconel 718 alloy has lower activity and corrosion rate compared with R Inconel 718 alloy. Because the passive film formed on the surface of SLM Inconel 718 alloy has a lower content of porous NiO and a higher content of compact Cr2O3, the passive film is more compact; however, the donor/acceptor density is lower in the passive film.
|
Received: 07 September 2021
|
|
Fund: National Key Research and Development Program of China(2018YFC0309100);High-Tech Ship Project of the Ministry of Industry and Information Technology (No.2018[473]), and Natural Science Foundation for Colleges and Universities of Jiangsu Province(19KJB460015) |
About author: QIAO Yanxin, professor, Tel: 18851407972, E-mail: yxqiao@just.edu.cn
|
1 |
Kong D C , Dong C F , Ni X Q , et al . Corrosion of metallic materials fabricated by selective laser melting [J]. npj Mater. Degrad., 2019, 3: 24
|
2 |
Dai N W , Zhang L C , Zhang J X , et al . Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
|
3 |
Kong D C , Ni X Q , Dong C F , et al . Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting [J]. Constr. Build. Mater., 2019, 221: 720
|
4 |
Revilla R I , Liang J W , Godet S , et al . Local Corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM [J]. J. Electrochem. Soc., 2016, 164: C27
|
5 |
Cao G H , Sun T Y , Wang C H , et al . Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018,136: 398
|
6 |
Chlebus E , Gruber K , Kuźnicka B , et al . Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mater. Sci. Eng. , 2015, A639: 647
|
7 |
Borisov E V , Popovich V A , Popovich A A , et al . Selective laser melting of Inconel 718 under high laser power [J]. Mater. Today, 2020, 30: 784
|
8 |
Li L L , Wang Z B , He S Y , et al . Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion [J]. J. Mater. Sci. Technol., 2021, 89: 158
|
9 |
Guo P F , Lin X , Li J Q , et al . Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections [J]. Corros. Sci., 2018, 132: 79
|
10 |
Hamza H M , Deen K M , Khaliq A , et al . Microstructural, corrosion and mechanical properties of additively manufactured alloys: A review [J]. Crit. Rev. Solid State Mater. Sci., 2022, 47: 46
|
11 |
Firoz R , Basantia S K , Khutia N , et al . Effect of microstructural constituents on mechanical properties and fracture toughness of Inconel 718 with anomalous deformation behavior at 650oC [J]. J. Alloys Compd., 2020, 845: 156276
|
12 |
Hosseini E , Popovich V A . A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
|
13 |
Li H X , Feng S N , Li J H , et al . Effect of heat treatment on the δ phase distribution and corrosion resistance of selective laser melting manufactured Inconel 718 superalloy [J]. Mater. Corros., 2018, 69: 1350
|
14 |
Raj B A , Jappes J T W , Khan M A , et al . Studies on heat treatment and electrochemical behaviour of 3D printed DMLS processed nickel-based superalloy [J]. Appl. Phys. , 2019, 125A: 722
|
15 |
You X G , Tan Y , Zhao L H , et al . Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy [J]. J. Alloys Compd., 2018, 741: 792
|
16 |
Tang Y B , Shen X W , Qiao Y X , et al . Corrosion behavior of a selective laser melted Inconel 718 alloy in a 3.5 wt.% NaCl solution [J]. J. Mater. Eng. Perform., 2021, 30: 5506
|
17 |
Zhang L N , Ojo O A . Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy [J]. J. Alloys Compd., 2020, 829: 154455
|
18 |
Luo S C , Huang W P , Yang H H , et al . Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
|
19 |
Qin T , Lin X , Yu J , et al . Performance of different microstructure on electrochemical behaviors of laser solid formed Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2021, 185: 109392
|
20 |
Stefanoni M , Angst U , Elsener B . Local electrochemistry of reinforcement steel-distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
|
21 |
Wang D P , Shen J W , Chen Z , et al . Relationship of corrosion behavior between single-phase equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn alloys and their constituents in NaCl solution [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1574
|
22 |
Zhu M , Zhang Q , Yuan Y F , et al . Passivation behavior of 2507 super duplex stainless steel in simulated concrete pore solution [J]. J. Mater. Eng. Perform., 2020, 29: 3141
|
23 |
Song Q N , Tong Y , Li H L , et al . Corrosion and cavitation erosion resistance enhancement of cast Ni-Al bronze by laser surface melting [J]. J. Iron Steel Res. Int., 2021, doi: 10.1007/s42243-021-00674-3
|
24 |
Liu L , Li Y , Wang F H . Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl [J]. Electrochim. Acta, 2007, 52: 7193
|
25 |
Fattah-alhosseini A , Vafaeian S . Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements [J]. J. Alloys Compd., 2015, 639: 301
|
26 |
Kong D C , Dong C F , Ni X Q , et al . The passivity of selective laser melted 316L stainless steel [J]. Appl. Surf. Sci., 2020, 504: 144495
|
27 |
Liu L , Li Y , Wang F H . Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta, 2007, 52: 2392
|
28 |
Szklarska-Smialowska Z . Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
|
29 |
Qiao Y X , Wang X Y , Yang L L , et al . Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107: 197
|
30 |
Nascimento C B , Donatus U , Ríos C T , et al . Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution [J]. J. Mater. Res. Technol., 2020, 9: 13879
|
31 |
Feng Z C , Cheng X Q , Dong C F , et al . Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
|
32 |
Hakiki N E , Montemor M F , Ferreira M G S , et al . Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel [J]. Corros. Sci., 2000, 42: 687
|
33 |
Yao J Z , Macdonald D D , Dong C F . Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods [J]. Corros. Sci., 2019, 146: 221
|
34 |
Bakare M S , Voisey K T , Roe M J , et al . X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625 [J]. Appl. Surf. Sci., 2010, 257: 786
|
35 |
Shi P , Lv X Z , Zhang J , et al . Corrosion behavior of nickel-based superalloy CMSX-4 in 3.5wt.% NaCl solution [J]. J. Guangxi. Acad. Sci., 2020, 36: 427
|
|
史 鹏, 吕仙姿, 张 杰 等 .镍基合金CMSX-4在3.5 wt.% NaCl溶液中的腐蚀行为 [J]. 广西科学院学报, 2020, 36: 427
|
36 |
Cwalina K L , Demarest C R , Gerard A Y , et al . Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion [J]. Curr. Opin. Solid State Mater. Sci., 2019, 23: 129
|
37 |
Cui Z Y , Chen S S , Dou Y P , et al . Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
|
38 |
Luo H , Dong C F , Li X G , et al . The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta., 2012, 64: 211
|
39 |
Kong D S , Chen S H , Wang C , et al . A study of the passive films on chromium by capacitance measurement [J]. Corros. Sci., 2003, 45: 747
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|