|
|
Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy |
ZHANG Xin1, CUI Bo2, SUN Bin3, ZHAO Xu4, ZHANG Xin1( ), LIU Qingsuo1, DONG Zhizhong1( ) |
1.School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China 2.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China 3.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 4.Beijing Tianyi Shangjia High-Tech Materials Co. Ltd., Beijing 102400, China |
|
Cite this article:
ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy. Acta Metall Sin, 2022, 58(8): 1065-1071.
|
Abstract Cu-Al-Ni alloys are not yet widely used due to issues related to their coarse grains, unacceptable plasticity, and poor thermal stability. Here, the physical and mechanical properties, as well as the corrosion behavior, of Cu-Al-Ni alloys doped with Y element (Cu-13Al-4Ni-xY (x = 0.2, 0.5, mass fraction, %)) were studied. XRD, OM, SEM, TEM, electronic universal testing machine, and electrochemical workstation were used to characterize the microstructures and measure the properties of the Cu-13Al-4Ni-xY alloys. The results showed that at room temperature, the microstructure of Cu-13Al-4Ni-xY alloys was mainly an 18R martensite matrix. The (Cu, Al, Ni)4Y second phase was characterized to have a hexagonal structure. The mechanical properties of the Cu-13Al-4Ni-xY alloys improved as the Y element content increased. For example, when the Y content was increased from 0% to 0.5%, the compressive fracture strain increased from 10.5% to 19.3% and the fracture strength increased from 580 to 1185 MPa. Additionally, the fracture type of the alloy changed from intergranular to transgranular with the addition of Y. Finally, the results from electrochemical experiments showed that the corrosion behavior of the alloys decreased slightly with the addition of Y.
|
Received: 16 September 2021
|
|
Fund: National Natural Science Foundation of China(52071236);Natural Science Foundation of Tianjin(18JCYBJC87000) |
About author: ZHANG Xin, associate professor, Tel: 18630878641, E-mail: zhangxin3510110@tjut.edu.cnDONG Zhizhong, professor, Tel: 13820371235, E-mail: zhizhong.dong@email.tjut.edu.cn
|
1 |
Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys [J]. Mater. Mech. Eng., 2014, 38(1): 1
|
|
左舜贵, 金学军, 金明江. 高温形状记忆合金的研究进展 [J]. 机械工程材料, 2014, 38(1): 1
|
2 |
Zou Q, Dang S, Li Y G, et al. Research Progress of iron-based shape memory alloys: A review [J]. Mater. Rep., 2019, 33: 3955
|
|
邹 芹, 党 赏, 李艳国 等. Fe基形状记忆合金的研究进展 [J]. 材料导报, 2019, 33: 3955
|
3 |
Zhang Y, Zeng H Y, Zhou J P, et al. Characterization of laser beam offset welding TiNi alloy and 304 stainless steel with different joining modes [J]. Opt. Laser Technol., 2020, 131: 106372
doi: 10.1016/j.optlastec.2020.106372
|
4 |
Bellini C, Berto F, Di Cocco V, et al. A cyclic integrated microstructural-mechanical model for a shape memory alloy [J]. Int. J. Fatigue, 2021, 153: 106473
doi: 10.1016/j.ijfatigue.2021.106473
|
5 |
Karaca H E, Acar E, Tobe H, et al. NiTiHf-based shape memory alloys [J]. Mater. Sci. Technol., 2014, 30: 1530
doi: 10.1179/1743284714Y.0000000598
|
6 |
Firstov G S, Van Humbeeck J, Koval Y N. High-temperature shape memory alloys [J]. Mater. Sci. Eng., 2003, A378: 2
|
7 |
Firstov G S, Humbeeck J V, Koval Y N. High temperature shape memory alloys problems and prospects [J]. J. Intell. Mater. Syst. Struct., 2006, 17: 1041
doi: 10.1177/1045389X06063922
|
8 |
Hsieh S F, Chen S L, Lin H C, et al. The machining characteristics and shape recovery ability of Ti-Ni-X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining [J]. Int. J. Mach. Tool Manuf., 2009, 49: 509
doi: 10.1016/j.ijmachtools.2008.12.013
|
9 |
Shamsolhodaei A, Panton B, Michael A, et al. Laser alloying as an effective way to fabricate NiTiPt shape memory alloys [J]. Metall. Mater. Trans., 2021, 52A: 4368
|
10 |
Tong Y X, Chen F, Tian B, et al. Microstructure and martensitic transformation of Ti49Ni51 - x Hf x high temperature shape memory alloys [J]. Mater. Lett., 2009, 63: 1869
doi: 10.1016/j.matlet.2009.05.069
|
11 |
Zhang X, Sui J H, Cai W, et al. Deformation mechanism of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy [J]. Intermetallics, 2015, 67: 52
doi: 10.1016/j.intermet.2015.07.017
|
12 |
Shao P, Ding L P, Luo D B, et al. Structural, electronic and elastic properties of the shape memory alloy NbRu: First-principle investigations [J]. J. Alloys Compd., 2017, 695: 3024
doi: 10.1016/j.jallcom.2016.11.354
|
13 |
Fonda R W, Jones H N, Vandermeer R A. The shape memory effect in equiatomic TaRu and NbRu alloys [J]. Scr. Mater., 1998, 39: 1031
doi: 10.1016/S1359-6462(98)00303-0
|
14 |
Gastien R, Corbellani C E, Sade M, et al. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals [J]. Acta Mater., 2005, 53: 1685
doi: 10.1016/j.actamat.2004.12.018
|
15 |
Zhu M, Ye X S, Li C H, et al. Preparation of single crystal CuAlNiBe SMA and its performances [J]. J. Alloys Compd., 2009, 478: 404
doi: 10.1016/j.jallcom.2008.11.051
|
16 |
Saud S N, Hamzah E, Abubakar T, et al. Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys [J]. J. Mater. Eng. Perform., 2014, 23: 3620
doi: 10.1007/s11665-014-1134-1
|
17 |
Sari U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys [J]. Int. J. Miner. Metall. Mater., 2010, 17: 192
doi: 10.1007/s12613-010-0212-0
|
18 |
Tong Y X, Li S Y, Zhang D T, et al. High strength and high electrical conductivity CuMg alloy prepared by cryorolling [J]. Trans. Nonferrous. Met. Soc., 2019, 29: 595
doi: 10.1016/S1003-6326(19)64968-X
|
19 |
Canbay C A, Karagoz Z. Effects of annealing temperature on thermomechanical properties of Cu-Al-Ni shape memory alloys [J]. Int. J. Thermophys., 2013, 34: 1325
doi: 10.1007/s10765-013-1486-z
|
20 |
Zare M, Ketabchi M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu-Al-Ni shape-memory alloys [J]. J. Therm. Anal. Calorim., 2017, 127: 2113
doi: 10.1007/s10973-016-5839-2
|
21 |
Zhang X, Zhang M, Cui T Y, et al. The enhancement of the mechanical properties and the shape memory effect for the Cu-13.0Al-4.0Ni alloy by boron addition [J]. J. Alloys Compd., 2019, 776: 326
doi: 10.1016/j.jallcom.2018.10.176
|
22 |
Deng Z H, Yin H Q, Zhang C, et al. Microstructure and mechanical properties of Cu-12Al-6Ni with Ti addition prepared by powder metallurgy [J]. Mater. Sci. Eng., 2021, A803: 140472
|
23 |
Chang S H, Liao B S, Gholami-Kermanshahi M. Effect of Co additions on the damping properties of Cu-Al-Ni shape memory alloys [J]. J. Alloys Compd., 2020, 847: 156560
doi: 10.1016/j.jallcom.2020.156560
|
24 |
Zhang X, Sui J H, Liu Q S, et al. Effects of Gd addition on the microstructure, mechanical properties and shape memory effect of polycrystalline Cu-Al-Ni shape memory alloy [J]. Mater. Lett., 2016, 180: 223
doi: 10.1016/j.matlet.2016.05.149
|
25 |
Zhang X, Cui T Y, Zhang X, et al. Effect of Nd addition on the microstructure, mechanical properties, shape memory effect and corrosion behaviour of Cu-Al-Ni high-temperature shape memory alloys [J]. J. Alloys Compd., 2021, 858: 157685
doi: 10.1016/j.jallcom.2020.157685
|
26 |
Stanciu S, Bujoreanu L G. Formation of stress-induced martensite in the presence of γ-phase, in a Cu-Al-Ni-Mn-Fe shape memory alloy [J]. Mater. Sci. Eng., 2008, A481-482: 494
|
27 |
Badawy W A, El-Rabiee M M, Helal N H, et al. Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solutions [J]. Electrochim. Acta, 2010, 56: 913
doi: 10.1016/j.electacta.2010.09.080
|
28 |
Lee J S, Wayman C M. Grain refinement of a Cu-Al-Ni shape memory alloy by Ti and Zr additions [J]. Trans. Jpn Inst. Met., 1986, 27: 584
doi: 10.2320/matertrans1960.27.584
|
29 |
Chang S H, Kuo C, Han J L. Selective leaching and surface properties of Cu-Al-Ni shape memory alloys [J]. Mater. Trans., 2018, 59: 787
doi: 10.2320/matertrans.M2017287
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|