Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (8): 1065-1071    DOI: 10.11900/0412.1961.2021.00400
Research paper Current Issue | Archive | Adv Search |
Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy
ZHANG Xin1, CUI Bo2, SUN Bin3, ZHAO Xu4, ZHANG Xin1(), LIU Qingsuo1, DONG Zhizhong1()
1.School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
3.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
4.Beijing Tianyi Shangjia High-Tech Materials Co. Ltd., Beijing 102400, China
Cite this article: 

ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy. Acta Metall Sin, 2022, 58(8): 1065-1071.

Download:  HTML  PDF(2693KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-Al-Ni alloys are not yet widely used due to issues related to their coarse grains, unacceptable plasticity, and poor thermal stability. Here, the physical and mechanical properties, as well as the corrosion behavior, of Cu-Al-Ni alloys doped with Y element (Cu-13Al-4Ni-xY (x = 0.2, 0.5, mass fraction, %)) were studied. XRD, OM, SEM, TEM, electronic universal testing machine, and electrochemical workstation were used to characterize the microstructures and measure the properties of the Cu-13Al-4Ni-xY alloys. The results showed that at room temperature, the microstructure of Cu-13Al-4Ni-xY alloys was mainly an 18R martensite matrix. The (Cu, Al, Ni)4Y second phase was characterized to have a hexagonal structure. The mechanical properties of the Cu-13Al-4Ni-xY alloys improved as the Y element content increased. For example, when the Y content was increased from 0% to 0.5%, the compressive fracture strain increased from 10.5% to 19.3% and the fracture strength increased from 580 to 1185 MPa. Additionally, the fracture type of the alloy changed from intergranular to transgranular with the addition of Y. Finally, the results from electrochemical experiments showed that the corrosion behavior of the alloys decreased slightly with the addition of Y.

Key words:  Cu-based shape memory alloy      microstructure      mechanical property      shape memory effect     
Received:  16 September 2021     
ZTFLH:  TV139.2  
Fund: National Natural Science Foundation of China(52071236);Natural Science Foundation of Tianjin(18JCYBJC87000)
About author:  ZHANG Xin, associate professor, Tel: 18630878641, E-mail: zhangxin3510110@tjut.edu.cnDONG Zhizhong, professor, Tel: 13820371235, E-mail: zhizhong.dong@email.tjut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00400     OR     https://www.ams.org.cn/EN/Y2022/V58/I8/1065

Fig.1  OM (a, b) and SEM (c, d) images of Cu-13Al-4Ni-xY alloys with x = 0.2 (a, c) and x = 0.5 (b, d)
Fig.2  XRD spectra of Cu-13Al-4Ni-xY (x = 0.2 and 0.5) alloys
Fig.3  TEM bright field image (a), the corresponding selected area electron diffraction (SAED) patterns of 18R martensite (b) and second phase (c) in the Cu-13Al-4Ni-0.5Y alloy; high resolution transmission electron microscope (HRTEM) image of area d in Fig.3a (Inset shows the fast Fourier transform) (d); EDS element maps of Cu (e), Al (f), Ni (g), and Y (h) for the second phase (d—interplanar spacing)
Fig.4  Compressive stress-strain curves (a), and fracture morphologies of the Cu-13Al-4Ni-xY alloys with x = 0.2 (b) and x = 0.5 (c)
Fig.5  Recovery characteristic curves of the Cu-13Al-4Ni-xY alloys with x = 0.2 (a) and x = 0.5 (b) under pre-strains of 8% and 10%, respectively (The arrow lines represent the recovery strain after heating to 350oC for 1 min. SME—shape memory effect)
Fig.6  Potential polarization curves for the Cu-13Al-4Ni-xY (x = 0, 0.2, 0.5) alloys in the 3.5%NaCl solution
AlloyEcorr (vs Ag/AgCl)icorrRpvcorr
VμA·cm-2kΩ·cm2mm·a-1
Cu-13Al-4Ni[25]-0.2641.472.290.017
Cu-13Al-4Ni-0.2Y-0.2712.251.400.026
Cu-13Al-4Ni-0.5Y-0.2723.031.560.035
Table 1  Corrosion parameters of Cu-13Al-4Ni-xY alloys in 3.5%NaCl solution
1 Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys [J]. Mater. Mech. Eng., 2014, 38(1): 1
左舜贵, 金学军, 金明江. 高温形状记忆合金的研究进展 [J]. 机械工程材料, 2014, 38(1): 1
2 Zou Q, Dang S, Li Y G, et al. Research Progress of iron-based shape memory alloys: A review [J]. Mater. Rep., 2019, 33: 3955
邹 芹, 党 赏, 李艳国 等. Fe基形状记忆合金的研究进展 [J]. 材料导报, 2019, 33: 3955
3 Zhang Y, Zeng H Y, Zhou J P, et al. Characterization of laser beam offset welding TiNi alloy and 304 stainless steel with different joining modes [J]. Opt. Laser Technol., 2020, 131: 106372
doi: 10.1016/j.optlastec.2020.106372
4 Bellini C, Berto F, Di Cocco V, et al. A cyclic integrated microstructural-mechanical model for a shape memory alloy [J]. Int. J. Fatigue, 2021, 153: 106473
doi: 10.1016/j.ijfatigue.2021.106473
5 Karaca H E, Acar E, Tobe H, et al. NiTiHf-based shape memory alloys [J]. Mater. Sci. Technol., 2014, 30: 1530
doi: 10.1179/1743284714Y.0000000598
6 Firstov G S, Van Humbeeck J, Koval Y N. High-temperature shape memory alloys [J]. Mater. Sci. Eng., 2003, A378: 2
7 Firstov G S, Humbeeck J V, Koval Y N. High temperature shape memory alloys problems and prospects [J]. J. Intell. Mater. Syst. Struct., 2006, 17: 1041
doi: 10.1177/1045389X06063922
8 Hsieh S F, Chen S L, Lin H C, et al. The machining characteristics and shape recovery ability of Ti-Ni-X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining [J]. Int. J. Mach. Tool Manuf., 2009, 49: 509
doi: 10.1016/j.ijmachtools.2008.12.013
9 Shamsolhodaei A, Panton B, Michael A, et al. Laser alloying as an effective way to fabricate NiTiPt shape memory alloys [J]. Metall. Mater. Trans., 2021, 52A: 4368
10 Tong Y X, Chen F, Tian B, et al. Microstructure and martensitic transformation of Ti49Ni51 - x Hf x high temperature shape memory alloys [J]. Mater. Lett., 2009, 63: 1869
doi: 10.1016/j.matlet.2009.05.069
11 Zhang X, Sui J H, Cai W, et al. Deformation mechanism of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy [J]. Intermetallics, 2015, 67: 52
doi: 10.1016/j.intermet.2015.07.017
12 Shao P, Ding L P, Luo D B, et al. Structural, electronic and elastic properties of the shape memory alloy NbRu: First-principle investigations [J]. J. Alloys Compd., 2017, 695: 3024
doi: 10.1016/j.jallcom.2016.11.354
13 Fonda R W, Jones H N, Vandermeer R A. The shape memory effect in equiatomic TaRu and NbRu alloys [J]. Scr. Mater., 1998, 39: 1031
doi: 10.1016/S1359-6462(98)00303-0
14 Gastien R, Corbellani C E, Sade M, et al. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals [J]. Acta Mater., 2005, 53: 1685
doi: 10.1016/j.actamat.2004.12.018
15 Zhu M, Ye X S, Li C H, et al. Preparation of single crystal CuAlNiBe SMA and its performances [J]. J. Alloys Compd., 2009, 478: 404
doi: 10.1016/j.jallcom.2008.11.051
16 Saud S N, Hamzah E, Abubakar T, et al. Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys [J]. J. Mater. Eng. Perform., 2014, 23: 3620
doi: 10.1007/s11665-014-1134-1
17 Sari U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys [J]. Int. J. Miner. Metall. Mater., 2010, 17: 192
doi: 10.1007/s12613-010-0212-0
18 Tong Y X, Li S Y, Zhang D T, et al. High strength and high electrical conductivity CuMg alloy prepared by cryorolling [J]. Trans. Nonferrous. Met. Soc., 2019, 29: 595
doi: 10.1016/S1003-6326(19)64968-X
19 Canbay C A, Karagoz Z. Effects of annealing temperature on thermomechanical properties of Cu-Al-Ni shape memory alloys [J]. Int. J. Thermophys., 2013, 34: 1325
doi: 10.1007/s10765-013-1486-z
20 Zare M, Ketabchi M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu-Al-Ni shape-memory alloys [J]. J. Therm. Anal. Calorim., 2017, 127: 2113
doi: 10.1007/s10973-016-5839-2
21 Zhang X, Zhang M, Cui T Y, et al. The enhancement of the mechanical properties and the shape memory effect for the Cu-13.0Al-4.0Ni alloy by boron addition [J]. J. Alloys Compd., 2019, 776: 326
doi: 10.1016/j.jallcom.2018.10.176
22 Deng Z H, Yin H Q, Zhang C, et al. Microstructure and mechanical properties of Cu-12Al-6Ni with Ti addition prepared by powder metallurgy [J]. Mater. Sci. Eng., 2021, A803: 140472
23 Chang S H, Liao B S, Gholami-Kermanshahi M. Effect of Co additions on the damping properties of Cu-Al-Ni shape memory alloys [J]. J. Alloys Compd., 2020, 847: 156560
doi: 10.1016/j.jallcom.2020.156560
24 Zhang X, Sui J H, Liu Q S, et al. Effects of Gd addition on the microstructure, mechanical properties and shape memory effect of polycrystalline Cu-Al-Ni shape memory alloy [J]. Mater. Lett., 2016, 180: 223
doi: 10.1016/j.matlet.2016.05.149
25 Zhang X, Cui T Y, Zhang X, et al. Effect of Nd addition on the microstructure, mechanical properties, shape memory effect and corrosion behaviour of Cu-Al-Ni high-temperature shape memory alloys [J]. J. Alloys Compd., 2021, 858: 157685
doi: 10.1016/j.jallcom.2020.157685
26 Stanciu S, Bujoreanu L G. Formation of stress-induced martensite in the presence of γ-phase, in a Cu-Al-Ni-Mn-Fe shape memory alloy [J]. Mater. Sci. Eng., 2008, A481-482: 494
27 Badawy W A, El-Rabiee M M, Helal N H, et al. Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solutions [J]. Electrochim. Acta, 2010, 56: 913
doi: 10.1016/j.electacta.2010.09.080
28 Lee J S, Wayman C M. Grain refinement of a Cu-Al-Ni shape memory alloy by Ti and Zr additions [J]. Trans. Jpn Inst. Met., 1986, 27: 584
doi: 10.2320/matertrans1960.27.584
29 Chang S H, Kuo C, Han J L. Selective leaching and surface properties of Cu-Al-Ni shape memory alloys [J]. Mater. Trans., 2018, 59: 787
doi: 10.2320/matertrans.M2017287
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!