Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (1): 106-124    DOI: 10.11900/0412.1961.2022.00436
Overview Current Issue | Archive | Adv Search |
Research Progress of Friction Stir Additive Manufacturing Technology
LI Huizhao1, WANG Caimei1, ZHANG Hua1(), ZHANG Jianjun1, HE Peng2, SHAO Minghao1, ZHU Xiaoteng1, FU Yiqin3
1.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
3.China National Petroleum Corporation, Beijing 100724, China
Cite this article: 

LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology. Acta Metall Sin, 2023, 59(1): 106-124.

Download:  HTML  PDF(5037KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper summarizes the research progress of friction stir additive manufacturing (FSAM) technology at home and abroad. FSAM is fast-forming, has high additive efficiency, and provides environmental protection. In addition, as a solid-phase additive technology, it effectively avoids shrinkage, porosity, and other defects caused by other melt-additive methods during molding. Currently, reported FSAM methods can be roughly divided into four categories: axial additive manufacturing, radial additive manufacturing, consumable friction-stir tool additive manufacturing, and superimposed plate additive manufacturing. The microstructures and properties of friction stir, laser, and arc additive samples are listed in detail. The advantages and disadvantages of the different additive methods and their application fields are expounded. The companies of friction stir additive equipment, the preliminary applications, and the development direction of friction stir additive equipment designed in the future are introduced. It lays a foundation for further application of friction stir additive technology.

Key words:  solid phase additive      friction stir      additive manufacturing      microstructure      mechanical property     
Received:  01 September 2022     
ZTFLH:  TG439.8  
Fund: State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology(AWJ-23M08);Cross-Disciplinary Science Foundation from Beijing Institute of Petrochemical Technology(BIPTCSF-013)
About author:  ZHANG Hua, professor, Tel: 13521880280, E-mail: huazhang@bipt.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00436     OR     https://www.ams.org.cn/EN/Y2023/V59/I1/106

Fig.1  Classification of friction stir additive manufacturing (FSAM) methods
Fig.2  Working principle diagram of hot wire friction additive device equipment[56]
(a) device working diagram (b) upward view of friction tool head
Fig.3  Schematics of a stationary shaft shoulder cavity additive device
(a) schematics of additive structure of stationary shaft shoulder cavity
(b) enlarged schematic diagram of cavity and feed hole
Fig.4  Schematics of a spiral groove additive device
(a) device working diagram
(b) lower end face structure of the shaft shoulder
(c) schematic of stirring pin structure
Fig.5  Schematic of spiral groove powder additive device
Fig.6  Schematics of a powder additive device for the feed hole[61]
(a) working diagram of friction head (b) top view of the friction head
Fig.7  Schematics of an additive device for square raw material strips
(a) 3D cross-sectional view of the additive device
(b) plane cutaway view of the container of the system
Fig.8  Schematic of the short rod material additive device
Fig.9  Schematics of a continuous additive device for raw material rod[65]
(a) schematic of the device structure
(b) sectional view of the feeding mechanism
(c) schematic of the end face of the stirring head
(d) schematic of the upper clutch module
(e) schematic of the lower clutch module
Fig.10  Schematic of a granular additive device
Fig.11  Schematics of a semi-solid-state additive device
(a) device working diagram (b) device sectional view
Fig.12  Schematics of a radial circle-by-turn additive device[69]
(a) device structure diagram
(b) bottom view of the stationary shaft shoulder and the stirring head
(c) schematic of stirring head structure
(d) schematic of the structure of the static shoulder body
(e) schematic of the mold structure
(f) schematic of the radial working process
Fig.13  Schematics of a radial layer-by-layer additive device
(a) consumable rod lateral additive manufacturing
(b) overlay additive strips for lateral additive manufacturing
Fig.14  Schematics of an additive device applied to cooling[75]
(a) schematic of the three-dimensional structure of the additive device
(b) schematic of the contact between the water cooled blocks and the additive test plates
MaterialFSAM methodMicrostructureMechanical propertyInstituteRef.
304 austenitic stainless steel

Consumable friction stir

tool

Equiaxed crystalsThe tensile test results show that the yield strength of the original stainless steel bar and the additive deposited part are 380 and 390 MPa, the tensile strength are 710 and 690 MPa, and the elongation are 50 % and 30 %, respectively

Indian Institute

of Technology

[78]
formed by
dynamic
recrystallization

7075 aluminum alloy

Axial addition of rod

The average hardness of the substrate and the additive raw rod is measured to be 164 HV, and most of the deposited materials exhibit a hardness value higher than 140 HV, comparable to the hardness of the raw rodVirginia Polytechnic Institute and State University[79]

2024 aluminum alloy

Superimposed

plate

The microhardness of the substrate is 130 HV, the minimum hardness of the bottom zone of the additive is 74 HV, and the maximum hardness of the top zone of the additive is 99 HV. The changes of the second phase and the grain cause the microhardness of the additive to be lower than that of the substrate

Nanchang Hangkong University

[80]

6561 aluminum alloy

Radial

layer-by-layer

additive

The tensile strength of the substrate and the additive strip is 465.57 MPa, and the maximum tensile strength of the stable additive zone is 203.67 MPa. The microhardness of the substrate and the additive strip is about 155 and 125 HV, respectively. The microhardness of the stable additive zone gradually decreases from the surface of the topmost additve strip to the interior,

but the hardness of the stable additive zone is generally stable at about 60 HV

Northeast Forestry University

[71]
Table 1  Properties and microstructure characteristics of FSAM samples of different materials[71,78-80]
MaterialAdditiveStirring center coreDepositionDeposition crossInner depositionRef
manufacturingarealongitudinalsectionregion
(AM) methodsection

2024-O aluminium alloy

FSAMUniform equiaxed grains with an average size of about 9.4 μm---[32]

2024-T6 aluminium alloy

Laser additive manufacturing

-Stripe shaped microstructures with the ribbon spacing of 0.5 mm

Stripe shaped microstructure

-[81]

AA2024 aluminum alloy

Arc additive manufacturing

---Banded columnar dendrites, equiaxed dendrites, and equiaxed non-dendrites[82]
Table 2  Microstructure characteristics of FSAM, laser and arc additive samples[32,81,82]
Fig.15  Comparison of microstructures of samples after additive manufacturing
(a) microstructure of the central core region of friction stir additive 2024 aluminum alloy[32]
(b) cross-sectional microstructure of laser additive manufactured 2024-T6 aluminum alloy[81]
(c) longitudinal sectional microstructure of laser additive manufactured 2024-T6 aluminum alloy[81]
(d) microstructure of arc additive manufactured AA2024 aluminum alloy (ED—equiaxed dendrite, END—equiaxed non-dendrite, CD—columar dendrite)[82]
AM method

Additive substrate

material

Condition classification

Sampling method of

tensile test

Rp0.2

MPa

Rm

MPa

A

%

H

MPa

Ref.
FSAM2024-OLap weldingParallel to the horizontal117.2227.831.1-[32]
aluminum alloysuperimposed platedirection of the additive travel
7N01-T4Along the direction of204.0297.019.478.0[83]
aluminum alloyadditive thickness
2024-T4Stationary shoulderAlong the direction of267.5268.263.072.0-92.0[74]
aluminum alloysuperimposed plateadditive thickness
Parallel to the horizontal283.9284.568.5-[74]
direction of the additive travel
Laser additive2024-T6Parallel deposition of 2024 aluminum alloy powderAlong the direction of120.7257.35.490.3[81]
manufacturingaluminum alloyadditive thickness

Cross deposition of

2024 aluminum alloy powder

188.3348.320.5110.8[81]
NZ30K-T5Selective laser meltingParallel to the horizontal380.0406.00.9-[84]
magnesiumof magnesium alloydirection of the additive
alloypowdertravel
6061 aluminumER4043 aluminumAlong the direction of114.7152.533.555.3[85]
alloysilicon alloy wireadditive thickness
Parallel to the horizontal119.7158.833.5-[85]
direction of the additive travel
Arc additiveAA2024-T6ER2319 Al-Cu alloyParallel to the horizontal374.0470.08.2146.0[82]
manufacturingaluminum alloyand ER5087 Al-Mgdirection of the additive travel
alloy wireAlong the direction of352.0410.02.1146.0[82]
additive thickness
AA2024-T4Parallel to the horizontal310.0458.012.7138.0[82]
aluminumdirection of the additive travel
alloyAlong the direction of294.0395.05.0138.0[82]
additive thickness
AZ31AZ31B magnesiumParallel to the horizontal77.3235.026.352.7[86]
magnesium alloyalloy welding wiredirection of the additive travel
Vertical to the horizontal76.0237.022.053.2[86]
direction of additive
manufacturing
5556 aluminumER5556 aluminumAlong the direction of-310.0-125.0[87]
alloyalloy welding wireadditive thickness
Table 3  Comparison of tensile property of three ways of additive parts[32,74,81-87]
FSAMAdditive formAdvantageDisadvantageScope of application
method
AxialWire materialLow cost; multiple wireSustainableComplexCarrier rockets, ships; automobiles
directionuninterruptedstructure;and other fields; suitable for
feeding holes; high
aluminum alloy ribbed panel
efficiency[59]additive;material
structure, inlet, complex frame
high additiveresidue in
beam structure of high efficiency,
efficiencyequipment
low cost manufacturing[58]
PowderChangeable moldingPreparation of new alloys difficult to prepare in equilibrium metallurgical processes[61]
parameters and additive
powder ratio[61]
Raw materialHigh material utilizationUltrafine grained homogeneous
rod
and small processingAM parts and thermoplastic
allowance[63]; expandedpolymers for various metals
additive geometry[62]and alloys[65]
GranulesDiversified materials andFSAM of gradient composites[67]
sizes[67]
VariousManufactruing of compositeFSAM of gradient composites[67]
materials canmaterials[67]
be added
RadialCircle-by-turnHigh additive quality; high load-bearingLow additiveManufacture of raw materials such
directionadditive components; high bonding strength[69]efficiencyas metals and metal matrix
composites with different
morphologies[69]
Layer-by-layerHigh material utilization; non-pollutingManufacture of dissimilar alloy
powder raw material; no structuraland light alloy structural parts[71]
limitations[71]
ConsumableRaw barSimple equipment method; simple operationAM of light metal structures such
frictionmaterialsteps; low cost; short manufacturing time;as aluminum alloy and magnesium
stir toolfast forming speed[72]alloy and stainless steel
SuperimposedLap based onSimple additive method; simple operationApplicable to aerospace,
plateFSWsteps; low costautomotive parts, ships, and
StationaryNo grinding or cutting after additiverail transportation fileds; and
shouldermanufacturingAM of aluminum alloy, magnesium
Apply coolingEffectively reduceing the thermal effect[75]alloy and other light metal
Stirring headThe material mixes more fully[76]structures, and stainless steel
with special
structure
Add presetHigh bonding strength; high joint quality;
heterogeneoushigh fracture strength[77]
metal
interlayer
Table 4  Advantages and disadvantages and applicable fields of FSAM different additive methods[58,59,61-63,65,67,69,71,72,75-77]
FSAMAdditive raw materialAdditive rawFSAM methodPreliminary application
equipment unitmaterial form
Meld ManufacturingAluminum alloy,Metal powdersAxial directionPrinting large metal parts, coating
Company, USAcopper alloy, nickeland rawapplications; component repair; metal
base alloy, titaniummaterials rodconnection; custom metal alloy and metal
alloymatrix composite blanks and parts
Harbin Institute ofLight alloy partsWireForming a few meters of aluminum alloy
Technology, Chinacomponents; application in aerospace
field; battlefield repair for amphibious
vehicles
Tianjin University,Aluminum alloy,Raw materialsForming a few meters of aluminum
Chinaaluminum lithiumrodalloy components
alloy, dissimilar
aluminum alloy
Beijing University ofAluminum alloy,WireAluminum alloy stiffened panel structure
Technology, Chinamagnesium alloy
Nanchang HangkongAluminum alloyPlateStatic shoulderStudy on microstructure and
University, Chinasuperimposedmechanical properties of
plateadditive parts
Indian Institute ofAustenitic stainlessConsumableConsumable
Technology, Indiansteelraw barfriction stir tool
material
Virginia PolytechnicAluminum alloyRaw materialsAxial direction
Institute and Staterod
University, USA
Northeast ForestryAluminum alloyAdditive stripsRadial direction
University, China
Beijing Institute ofAluminum alloyPlateSuperimposed
Technology, Chinaplate based on
FSW lap
principle
Catholic University ofMetal alloys ofMixture of-FSAM of gradient composites
Louvain, Belgiumdifferent materialsmultiple
materials
Table 5  FSAM equipment units and the applications
1 Wang H J. Research status and development tendency of additive manufacturing [J]. J. Beijing Inf. Sci. Technol. Univ., 2014, 29(3): 20
王红军. 增材制造的研究现状与发展趋势 [J]. 北京信息科技大学学报, 2014, 29(3): 20
2 Lian Y P, Wang P D, Gao J, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review [J]. Adv. Mech., 2021, 51: 648
廉艳平, 王潘丁, 高 杰 等. 金属增材制造若干关键力学问题研究进展 [J]. 力学进展, 2021, 51: 648
3 Lu B H, Li D C. Development of the additive manufacturing (3D printing ) technology [J]. Mach. Build. Auto., 2013, 42(4): 1
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
4 Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromach. Mould, 2012, (S1): 20
李涤尘, 田小永, 王永信 等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (S1): 20
5 Yang Y H. Analysis of classifications and characteristic of additive manufacturing (3D print) [J]. Adv. Aeronaut. Sci. Eng., 2019, 10: 309
杨延华. 增材制造(3D打印)分类及研究进展 [J]. 航空工程进展, 2019, 10: 309
6 Zhang H, Yang K. Overview of the present situation and application of additive manufacturing [J]. Packag. Eng., 2021, 42(16): 9
张 衡, 杨 可. 增材制造的现状与应用综述 [J]. 包装工程, 2021, 42(16): 9
7 Harun W S W, Kamariah M S I N, Muhamad N, et al. A review of powder additive manufacturing processes for metallic biomaterials [J]. Powder Technol., 2018, 327: 128
doi: 10.1016/j.powtec.2017.12.058
8 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta. Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
9 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
10 Liu Y, Ren X H, Chang Y L, et al. Research status of metal additive manufacturing technology [J]. Hot Work. Technol., 2018, 47(19): 15
刘 勇, 任香会, 常云龙 等. 金属增材制造技术的研究现状 [J]. 热加工工艺, 2018, 47(19): 15
11 Hu M J, Ji L K, Ma Q R, et al. Overview of laser additive manufacturing technology and status [J]. Pet. Tubular Goods Instrum., 2019, 5(5): 1
胡美娟, 吉玲康, 马秋荣 等. 激光增材制造技术及现状研究 [J]. 石油管材与仪器, 2019, 5(5): 1
12 Zhang L H, Qian B, Zhang C R, et al. Summary of development trend of metal additive manufacturing technology [J]. Mater. Sci Technol., 2022, 30(1): 42
张立浩, 钱 波, 张朝瑞 等. 金属增材制造技术发展趋势综述 [J]. 材料科学与工艺, 2022, 30(1): 42
13 Zhou H L, Liu Y S, Song C B, et al. Development of 3D printing wire DY590 for additive manufacturing [J]. Weld. Technol., 2018, 47(6): 66
周海龙, 刘玉双, 宋昌宝 等. 增材制造用3D打印丝材DY590的开发 [J]. 焊接技术, 2018, 47(6): 66
14 Zhang X, Lin X H, Gao X Q, et al. Refractory metal materials made by additive manufacturing and its application progress [J]. Powder Metall. Ind., 2022, 32(3): 18
张 新, 林小辉, 高选乔 等. 增材制造难熔金属材料及其应用研究进展 [J]. 粉末冶金工业, 2022, 32(3): 18
15 Dang X L, Wang J. Research status and prospects of additive manufacturing technology at home and abroad [J]. Aviat. Precis. Manuf. Technol., 2020, 56(2): 35
党晓玲, 王 婧. 增材制造技术国内外研究现状与展望 [J]. 航空精密制造技术, 2020, 56(2): 35
16 Liu W, Li N, Zhou B, et al. Progress in additive manufacturing on complex structures and high-performance materials [J]. J. Mech. Eng., 2019, 55(20): 128
doi: 10.3901/JME.2019.20.128
刘 伟, 李 能, 周 标 等. 复杂结构与高性能材料增材制造技术进展 [J]. 机械工程学报, 2019, 55(20): 128
17 Gopan V, Leo Dev Wins K, Surendran A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review [J]. Cirp J. Manuf. Sci. Technol., 2021, 32: 228
doi: 10.1016/j.cirpj.2020.12.004
18 Yu L, Liu Y Y, Zhao Y. Research status of laser additive manufacturing material system for aluminum alloy [J/OL]. Surf. Technol.,
俞 亮, 刘永业, 赵 阳. 铝合金激光增材制造材料体系研究现状 [J/OL]. 表面技术,
19 Cao J W, Wang P, Liu Z Y, et al. Research progress on powder-based laser additive manufacturing technology of ceramics [J]. J. Inorg. Mater., 37(3), 2022, 37: 241
曹继伟, 王 沛, 刘志远 等. 基于粉末成形的激光增材制造陶瓷技术研究进展 [J]. 无机材料学报, 2022, 37: 241
doi: 10.15541/jim20210590
20 Gu D D, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
21 Li N, Liu W, Wang Y, et al. Laser additive manufacturing on metal matrix composites: A review [J]. Chin. J. Mech. Eng., 2021, 34: 38
doi: 10.1186/s10033-021-00554-7
22 Pique A, Auyeung R C Y, Kim H, et al. Laser 3D micro-manufacturing [J]. J. Phys., 2016, 49D: 223001
23 Peng Q, Dong S Y, Yan S X, et al. An overview of defects in laser melting deposition forming products and the corresponding controlling methods [J]. Mater. Rep., 2018, 32: 2666
彭 谦, 董世运, 闫世兴 等. 激光熔化沉积成形缺陷及其控制方法综述 [J]. 材料导报, 2018, 32: 2666
24 Teng S M. Research progress of wire and arc additive manufacturing (end) [J]. Nonferrous Met. Process., 2022, 51(2): 9
滕树满. 电弧熔丝增材制造研究进展(续完) [J]. 有色金属加工, 2022, 51(2): 9
25 Zhang H Z. Basic study on wire-arc additive manufacturing of magnesium alloy fabricated by cold metal transfer heat source [D]. Shijiazhuang: Shijiazhuang Tiedao Univercity, 2021
张汉铮. 基于冷金属过渡的镁合金电弧增材制造技术基础研究 [D]. 石家庄: 石家庄铁道大学, 2021
26 Xiong J, Xue Y G, Chen H, et al. Status and development prospects of forming control technology in arc-based additive manufacturing [J]. Electr. Weld. Mach., 2015, 45(9): 45
熊 俊, 薛永刚, 陈 辉 等. 电弧增材制造成形控制技术的研究现状与展望 [J]. 电焊机, 2015, 45(9): 45
27 Xiong J T, Geng H B, Lin X, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing [J]. Aeronaut. Manuf. Technol., 2015, 58(23-24): 80
熊江涛, 耿海滨, 林 鑫 等. 电弧增材制造研究现状及在航空制造中应用前景 [J]. 航空制造技术, 2015, 58(23-24): 80
28 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
29 Wang M. Study on microstructure and mechanical properties of additive manufactured titanium alloy based on electron beam melting [D]. Zibo: Shandong University of technology, 2019
王 铭. 电子束增材制造钛合金组织与力学性能研究 [D]. 淄博: 山东理工大学, 2019
30 Wu F, Lin B C, Quan Y Z, et al. Review on equipment and application of electron-beam based additive manufacturing [J]. Vacuum, 2022, 59(1): 79
吴 凡, 林博超, 权银洙 等. 电子束增材制造设备及应用进展 [J]. 真空, 2022, 59(1): 79
31 Li S W, Gao Q W, Zhao J, et al. Research progress and prospect of electron beam freeform fabrication [J]. Mater. China, 2021, 40: 130
李绍伟, 郜庆伟, 赵 健 等. 电子束熔丝增材制造研究进展及展望 [J]. 中国材料进展, 2021, 40: 130
32 Zou S K. Investigation on the processing and mechanism of friction stir additive manufacturing of high strength aluminum alloy [D]. Beijing: Beijing Institute of Technology, 2016
邹胜科. 高强铝合金搅拌摩擦增材制造成形机理和工艺研究 [D]. 北京: 北京理工大学, 2016
33 Zhang H, Lin S B, Wu L, et al. Current progress and prospect of friction stir welding [J]. Trans. China Weld. Inst., 2003, 24(3): 91
张 华, 林三宝, 吴 林 等. 搅拌摩擦焊研究进展及前景展望 [J]. 焊接学报, 2003, 24(3): 91
34 Fu Z H, Huang M H, Zhou Z P, et al. Research status of friction stir welding [J]. Weld. Join., 2002, (11): 6
傅志红, 黄明辉, 周鹏展 等. 搅拌摩擦焊及其研究现状 [J]. 焊接, 2002, (11): 6
35 Gao Q W, Zhao J, Shu F Y, et al. Research progress in aluminum alloy additive manufacturing [J]. J. Mater. Eng., 2019, 47(11): 32
郜庆伟, 赵 健, 舒凤远 等. 铝合金增材制造技术研究进展 [J]. 材料工程, 2019, 47(11): 32
36 Hou Y X, Xu R Z, Li H, et al. Research status and prospect of friction stir welding technology of Al alloy [J]. Hot Work. Technol., 2019, 48(5): 1
侯艳喜, 徐荣正, 李 慧 等. 铝合金搅拌摩擦焊接技术的现状与展望 [J]. 热加工工艺, 2019, 48(5): 1
37 Threadgill P L, Leonard A J, Shercliff H R, et al. Friction stir welding of aluminium alloys [J]. Int. Mater. Rev., 2009, 54: 49
doi: 10.1179/174328009X411136
38 Johnson R. Friction stir welding of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 365
doi: 10.4028/www.scientific.net/MSF.419-422.365
39 Li S Y. Research progress on friction stir welding process of aluminum/magnesium dissimilar alloys [J]. MW Met. Form., 2022, (6): 52
李首谊. 铝/镁异种合金搅拌摩擦焊工艺研究进展 [J]. 金属加工(热加工), 2022, (6): 52
40 Yang S Y, Liu D D. Status and prospect of friction stir welding of magnesium alloys [J]. Chin. J. Rare Met., 2014, 38: 896
杨素媛, 刘冬冬. 镁合金搅拌摩擦焊的研究现状与展望 [J]. 稀有金属, 2014, 38: 896
41 Ma Z Y, Shang Q, Ni D R, et al. Friction stir welding of magnesium alloys: A review [J]. Acta. Metall. Sin., 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
马宗义, 商 乔, 倪丁瑞 等. 镁合金搅拌摩擦焊接的研究现状与展望 [J]. 金属学报, 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
42 Shi Y W, Tang W. The principle and application of the friction stir welding [J]. Electr. Weld. Mach., 2000, 30(1): 6
史耀武, 唐 伟. 搅拌摩擦焊的原理与应用 [J]. 电焊机, 2000, 30(1): 6
43 Wang W F, Tong Y G, Wang C X. New wielding technology—FSW [J]. Electr. Weld. Mach., 2004, 34(1): 15
王文峰, 童彦刚, 王纯祥. 一种新型焊接工艺——搅拌摩擦焊 [J]. 电焊机, 2004, 34(1): 15
44 Zhang W, Chen X G, Zha C S. A new welding method of ship building—The principle and application of the friction stir welding [J]. Ship Sci. Technol., 2007, 29(4): 92
张 维, 陈宪刚, 查长松. 新型船舶焊接技术——搅拌摩擦焊的原理与应用 [J]. 舰船科学技术, 2007, 29(4): 92
45 Shen Z K. Hybrid friction stir welding technology for steel [D]. Lanzhou: Lanzhou University of Technology, 2011
申志康. 钢的复合搅拌摩擦焊技术 [D]. 兰州: 兰州理工大学, 2011
46 Zeng P. The characteristic of friction stir welding and its application in the aluminum alloy structure of ship [J]. Ship Ocean Eng., 2010, 39(1): 55
曾 平. 搅拌摩擦焊在船用铝合金结构中的应用 [J]. 船海工程, 2010, 39(1): 55
47 Luan G H. Development of friction stir welding in China [J]. Electr. Weld. Mach., 2004, 34(S1): 98
栾国红. 搅拌摩擦焊在中国的发展 [J]. 电焊机, 2004, 34(S1): 98
48 Liu R M, Sun C K, Dang Q M, et al. Research of friction stir welding tool [J]. Mach. Des. Manuf., 2004, (4): 45
刘日明, 孙成凯, 党青敏 等. 搅拌摩擦焊工具的研究现状 [J]. 机械设计与制造, 2004, (4): 45
49 Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review [J]. J. Mater. Sci. Techno., 2018, 34: 1
50 Xue F T, Liu H B. The overview of friction stir additive manufacturing [J]. Mod. Manuf. Eng., 2019, (4): 33
薛凤桐, 刘海滨. 摩擦搅拌增材制造发展概述 [J]. 现代制造工程, 2019, (4): 33
51 Shi L, Li Y, Xiao Y C, et al. Research progress of metal solid phase additive manufacturing based on friction stir [J]. J. Mater. Eng., 2022, 50(1): 1
石 磊, 李 阳, 肖亦辰 等. 基于搅拌摩擦的金属固相增材制造研究进展 [J]. 材料工程, 2022, 50(1): 1
52 Rathee S, Srivastava M, Pandey P M, et al. Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies [J]. Cirp J. Manuf. Sci. Tec., 2021, 35: 560
53 Mishra R S, Haridas R S, Agrawal P. Friction stir-based additive manufacturing [J]. Sci. Technol. Weld. Join., 2022, 27: 141
doi: 10.1080/13621718.2022.2027663
54 Gao H Y, Li H J. Friction additive manufacturing technology: A state-of-the-art survey [J]. Adv. Mech. Eng., 2021, 13(7): 1
55 Seidi E, Miller S F, Carlson B E. Friction surfacing deposition by consumable tools [J]. J. Manuf. Sci. Eng., 2021, 143: 120801
doi: 10.1115/1.4050924
56 Liu X C, Ni Z H, Pei X J, et al. An additive manufacturing device based on hot wire friction micro-forging and the application method [P]. Chin. Pat, 202110386023.0, 2021
刘小超, 倪中华, 裴宪军 等. 一种基于热丝摩擦微锻的增材制造装置及制造方法 [P]. 中国专利, 202110386023.0, 2021)
57 Wan L, Chen S H, Huang T F, et al. A device and method for FSW additive manufacturing using static shoulder cavity [P]. Chin. Pat, 202011448053.1, 2021
万 龙, 陈思浩, 黄体方 等. 一种利用静止轴肩空腔进行FSW增材制造的装置及方法 [P]. 中国专利: 202011448053.1, 2021)
58 Zhao H X. Wire filling friction stir additive manufacturing device and additive manufacturing method [P]. Chin. Pat, 201810235551.4, 2019
赵华夏. 一种填丝搅拌摩擦增材制造装置及增材制造方法 [P]. 中国专利, 201810235551.4, 2019)
59 Shi L, Li Y, Xiao Y C, et al. A wire-filled static shoulder friction stir welding and additive manufacturing device and method [P]. Chin. Pat, 202110160985.4, 2021
石 磊, 李 阳, 肖亦辰 等. 一种填丝静轴肩搅拌摩擦焊接与增材制造装置及方法 [P]. 中国专利, 202110160985.4, 2021)
60 Zhang Z, Yuan H L, Tan Z J. A new friction stir additive manufacturing machine [P]. Chin. Pat, 201810229291. X, 2018
张 昭, 苑红磊, 谭治军 等. 一种新型的搅拌摩擦增材制造机 [P]. 中国专利, 201810229291.X, 2018)
61 Huang Y X, Zou M D, Meng X C, et al. Friction head and friction stir additive manufacturing method with adjustable components and synchronously feeding material [P]. Chin. Pat, 201910550014.3, 2019
黄永宪, 邹明达, 孟祥晨 等. 一种组分可调同步送料的摩擦头及摩擦增材制造方法 [P]. 中国专利, 201910550014.3, 2019)
62 Rodriguez R I, Bruno Z S. Methods and containers for loading raw material rods into additive friction stir deposition machines [P]. Chin. Pat, 202010806557. X, 2021
罗盖·I·罗德里格斯, 布鲁诺·萨莫拉诺·森德罗斯. 用于将原料棒装载到增材摩擦搅拌沉积机中的方法和容器 [P]. 中国专利, 202010806557.X, 2021)
63 Zhao H X, Wang W B. Friction flow additive manufacturing device and additive manufacturing method [P]. Chin. Pat, 201810234931.6, 2019
赵华夏, 王卫兵. 一种流动摩擦增材制造装置及增材制造方法 [P]. 中国专利, 201810234931.6, 2019)
64 Wan L, Wen Q, Huang T F. A additive manufacturing mechanism and manufacturing method based on short rod materials [P]. Chin. Pat, 202110172383.0, 2021
万 龙, 温 琦, 黄体方. 一种基于短棒物料增材制造机构及制造方法 [P]. 中国专利, 202110172383.0, 2021)
65 Huang Y X, Xie Y M, Meng X C. Continuously feeding friction stir additive manufacturing device and method [P]. Chin. Pat, 202110411108. X, 2021
黄永宪, 谢聿铭, 孟祥晨. 一种连续进给送料搅拌摩擦增材制造装置及增材制造方法 [P]. 中国专利, 202110411108.X, 2021)
66 Liu H J, Liu X Q, Hu Y Y, et al. A method of friction stir welding additive manufacturing bar [P]. Chin. Pat, 201510955775.9, 2016
刘会杰, 刘向前, 胡琰莹 等. 一种搅拌摩擦焊增材制造棒材的方法 [P]. 中国专利, 201510955775.9, 2016)
67 Shu X, Wan L, Lv Z L. A granule friction stir additive manufacturing device and method [P]. Chin. Pat, 202110284601. X, 2021
树 西, 万 龙, 吕宗亮. 一种颗粒式搅拌摩擦增材制造装置及方法 [P]. 中国专利, 202110284601.X, 2021)
68 Wan L, Liu J L, Lv Z L. A semi-solid additive manufacturing device and method [P]. Chin. Pat, 202011606242.7, 2021
万 龙, 刘景麟, 吕宗亮. 一种半固态增材制造装置及方法 [P]. 中国专利, 202011606242.7, 2021)
69 Ji S D, Li M S, Yue Y M, et al. A device and method for radial additive manufacturing of friction stir welding [P]. Chin. Pat, 201910915488.3, 2020
姬书得, 李鸣申, 岳玉梅 等. 一种搅拌摩擦焊径向增材制造的装置与方法 [P]. 中国专利, 201910915488.3, 2020)
70 Seidi E, Miller S F. A novel approach to friction surfacing: Experimental analysis of deposition from radial surface of a consumable tool [J]. Coatings, 2020, 10: 1016
doi: 10.3390/coatings10111016
71 Sun C W. Study on technology and microstructure performance of side friction stir additive manufacturing [D]. Harbin: Northeast Forestry University, 2020
孙朝伟. 侧向搅拌摩擦增材制造工艺与组织性能研究 [D]. 哈尔滨: 东北林业大学, 2020
72 Hua P, Li R, Xiao M, et al. A method of additive manufacturing by consumable stirring friction tools [P]. Chin. Pat, 201711019260.3, 2018
华 鹏, 李 枘, 肖 萌 等. 一种通过消耗型搅拌摩擦工具增材制造的方法 [P]. 中国专利, 201711019260.3, 2018)
73 Fu X R, Xing L, Huang C P, et al. Microstructure of 2024 aluminum alloy by stationary shoulder friction stir additive manufacturing [J]. Chin. J. Nonferrous Met., 2019, 29: 1591
傅徐荣, 邢 丽, 黄春平 等. 静轴肩搅拌摩擦增材制造2024铝合金的组织特征 [J]. 中国有色金属学报, 2019, 29: 1591
74 Huang B. Study on additive manufacturing technology based on the principle of stationary shoulder friction stir welding [D]. Nanchang: Nanchang Hangkong University, 2016
黄 斌. 基于静轴肩搅拌摩擦焊的增材制造技术研究 [D]. 南昌: 南昌航空大学, 2016
75 He C S, Wei J X, Li Y, et al. A cooling friction stir additive manufacturing device and method [P]. Chin. Pat, 201811509290.7, 2019
何长树, 韦景勋, 李 颖 等. 一种施加冷却的搅拌摩擦增材制造装置及方法 [P]. 中国专利, 201811509290.7, 2019)
76 Xu N, Wang H F, Jiang D, et al. A stirring tool for friction stir additive manufacturing [P]. Chin. Pat, 201922157857.5, 2020
许 诺, 汪洪峰, 姜 迪 等. 一种用于搅拌摩擦增材制造的搅拌头 [P]. 中国专利, 201922157857.5, 2020)
77 Zhang H J, Liu X, Kong X L, et al. A friction stir additive manufacturing method for preset heterogeneous metal interlayers [P]. Chin. Pat, 202110354228.0, 2021
张会杰, 刘 旭, 孔旭亮 等. 一种预置异质金属夹层的搅拌摩擦增材制造方法 [P]. 中国专利, 202110354228.0, 2021)
78 Dilip J J S, Rafi H K, Ram G D J. A new additive manufacturing process based on friction deposition [J]. Trans. Indian Inst. Met., 2011, 64: 27
doi: 10.1007/s12666-011-0005-9
79 Griffiths R J, Petersen D T, Garcia D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy [J]. Appl. Sci., 2019, 9: 3486
doi: 10.3390/app9173486
80 Fu X R. Study on microstructure and properties of 2024 aluminum alloy by stationary shoulder frictional stir additive manufacturing [D]. Nanchang: Nanchang Hangkong University, 2018
傅徐荣. 2024铝合金静轴肩搅拌摩擦增材组织及性能研究 [D]. 南昌: 南昌航空大学, 2018
81 Gu T. Microstructure and properties of high strength aluminum alloy Al 2024 laser additive manufacturing [D]. Harbin: Harbin Institute of Technology, 2019
谷 涛. 高强度铝合金Al 2024激光增材制造组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
82 Qi Z W, Qi B J, Cong B Q, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated [J]. J. Manuf. Process., 2019, 40: 27
doi: 10.1016/j.jmapro.2019.03.003
83 Wei J X. The microstructure and properties adjustment of friction stir additive manufactured build for 7N01 aluminum alloy [D]. Shenyang: Northeastern university, 2019
韦景勋. 7N01铝合金搅拌摩擦增材体显微组织与性能的控制 [D]. 沈阳: 东北大学, 2019
84 Wang N Q. Basic research on selective laser melting additive manufacturing process of NZ30K magnesium alloy [D]. Shanghai: Shanghai Jiao Tong University, 2020
王南清. NZ30K镁合金激光选区熔化增材制造成型工艺基础研究 [D]. 上海: 上海交通大学, 2020
85 Guo Y M. The laser additive manufacturing technology of aluminum alloy with melting wire [D]. Nanjing: Nanjing University of Science and Technology, 2018
郭一蒙. 铝合金激光熔丝增材制造工艺研究 [D]. 南京: 南京理工大学, 2018
86 Liang W Q, Ren X H, Yu Z T, et al. Microstructure and mechanical properties of wire arc additive manufacturing of AZ31 magnesium alloy [J/OL]. Mater. Sci. Technol.,
梁文奇, 任香会, 于振涛 等. 电弧增材制造AZ31镁合金组织与力学性能分析 [J/OL] 材料科学与工艺,
87 Zhou G S. Study on CMT arc additive manufacturing technology and microstructure and properties for 5556 aluminum alloy [D]. Shenyang: Shenyang University, 2021
周桂申. 5556铝合金CMT电弧增材制造技术及性能研究 [D]. 沈阳: 沈阳大学, 2021
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!