Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (12): 1567-1578    DOI: 10.11900/0412.1961.2021.00031
Research paper Current Issue | Archive | Adv Search |
Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel
LI Juan1, ZHAO Honglong1(), ZHOU Nian2, ZHANG Yingzhe3, QIN Qingdong1(), SU Xiangdong1
1.Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China
2.School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China
3.Special Functional Materials Collaborative Innovation Center of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China
Cite this article: 

LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel. Acta Metall Sin, 2021, 57(12): 1567-1578.

Download:  HTML  PDF(4293KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During fusion welding of the Cu-containing high-entropy alloy (HEA) of CoCrFeNiCu, Cu precipitates at the grain boundary and reduces the welding quality and mechanical properties. Solid-phase diffusion welding is connected with the diffusion of elements, which reduces the segregation of Cu and solves this problem well. In the present work, the study of diffusion welding of CoCrFeNiCu HEA with 304 stainless steel (304SS) was carried by SEM, EBSD, TEM, and XRD. The properties of the microstructure and crystal type were obtained. The results show that element diffusion can achieve high-quality connection between the two metals. As the temperature increases, the diffusion capacity increases. The pores at the interface disappear. The thickness of the diffusion layer is between 10-31 μm, without forming intermetallic compound, which shows that a solid solution microstructure is formed after diffusion. According to the XRD, this microstructure is mainly as CoCrFeNiCuMn, that leads to an improvement in the mechanical properties. The hardness of the CoCrFeNiCu HEA-diffusion layer-304SS shows a gradient increase. The crystal structure type is mainly as substructured and recrystallized structure. The proportion of low-angle grain boundaries is 93% in the diffusion layer. The EBSD test results show that the grain orientation of the welded joint (diffusion layer) has changed, mostly concentrated on the (111) plane. This also causes anisotropy of the mechanical properties. Tensile performance test showed that the material fractured in the CoCrFeNiCu HEA base material area. These show that diffusion welding achieves a high-quality connection of the two materials.

Key words:  high-entropy alloy      diffusion weld      evolution of microstructure      mechanical property     
Received:  19 January 2021     
ZTFLH:  TG457.1  
Fund: National Natural Science Foundation of China(51964011);Guizhou Province Science Technology Plan Project([2020]1Y235);Guizhou Province Process Industry New Process Engineering Research Center([2017]021);Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province([2016] 5104)
About author:  QIN Qingdong, professor, Tel: 18185000402, E-mail: 20140441@git.edu.cnZHAO Honglong, associate professor, Tel: 15885085686, E-mail: 20201015@git.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00031     OR     https://www.ams.org.cn/EN/Y2021/V57/I12/1567

AlloyCrCoFeNiCuMnCSiMoPS
CoCrFeNiCu HEA19.0219.6418.9220.8221.60------
304SS18.92-Bal.9.210.141.960.140.610.37< 0.03< 0.03
Table 1  Chemical compositions of base materials
Fig.1  Schematic of the tensile sample with a thickness of 3 mm (unit: mm)
Fig.2  OM (a) and SEM (c) images, XRD spectrum (b), and EDS result (d) of CoCrFeNiCu HEA base metal
Fig.3  OM image (a) and XRD spectrum (b) of 304SS
Fig.4  OM (a, c, e, g) and SEM (b, d, f, h) images of CoCrFeNiCu HEA/304SS welded joints at 950oC (a, b), 1000oC (c, d), 1050oC (e, f), and 1100 oC (g, h)
Fig.5  TEM image (a) and EDS analysis (b) of the CoCrFeNiCu HEA after diffusion welding at 1100oC
Fig.6  EDS line scan maps of the CoCrFeNiCu HEA/304SS welded joints at 950oC (a), 1000oC (b), 1050oC (c), and 1100oC (d)
Fig.7  SEM image and EDS element distribution maps of the CoCrFeNiCu HEA/304SS welded joint fracture surface at 1100oC
Fig.8  EDS quantitative results of particles in the ellipse area (Fig.7) (a) and XRD spectra of the fracture surface at 1100oC (b)
Fig.9  Hardness distribution maps of the CoCrFeNiCu HEA/304SS welded joints at 950oC (a), 1000oC (b), 1050oC (c), and 1100oC (d)
Fig.10  Stress-strain curves of the CoCrFeNiCu HEA/304SS welded joints at different welding temperatures
Fig.11  EBSD (inverse pole figure + grain boundary) (a, b) and pole figures (c, d) of the CoCrFeNiCu HEA (a, c) and CoCrFeNiCu HEA/304SS welded joint at 1100oC (b, d)
Fig.12  Misorienation and composition of crystal structures of the CoCrFeNiCu HEA (a) and CoCrFeNiCu HEA/304SS welded joint at 1100oC (b) (f—fraction of low-angle grain boundaries)
1 Murty B S, Yeh J W, Ranganathan S. High-Entropy Alloys [M]. Amsterdam: Elsevier, 2014: 5
2 Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications [M]. Switzerland: Springer, 2016: 12
3 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
4 Bhattacharjee T, Zheng R X, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 207
5 Sanchez J M, Vicario I, Albizuri J, et al. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys [J]. J. Mater. Res. Technol., 2019, 8: 795
6 Li P, Wang S, Xia Y Q, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45: 59
7 Li P, Sun H T, Wang S, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to GH4169 superalloy [J]. Mater. Sci. Eng., 2020, A793: 139843
8 Lei Y, Hu S P, Yang T L, et al. Vacuum diffusion bonding of high-entropy Al0.85CoCrFeNi alloy to TiAl intermetallic [J]. J. Mater. Process. Technol., 2020, 278: 116455
9 Li P, Sun H T, Wang S, et al. Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Alloys Compd., 2020, 814: 152322
10 Ding W, Wang X J, Liu N, et al. Diffusion bonding of copper and 304 stainless steel with an interlayer of CoCrFeMnNi high-entropy alloy [J]. Acta Metall. Sin., 2020, 56: 1084
丁 文, 王小京, 刘 宁等. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究 [J]. 金属学报, 2020, 56: 1084
11 Liu Y L, Luo Y C, Zhao D, et al. Interfacial behavior and joint performance of high-entropy alloy CoCrFeMnNi and pure Cu joints obtained by vacuum diffusion welding [J].
J. Mech. Eng., 2017, 53(2): 84刘玉林, 罗永春, 赵 丹等. 高熵合金(CoCrFeMnNi)/铜真空扩散连接的界面行为及接头性能研究 [J]. 机械工程学报, 2017, 53(2): 84
12 Verma A, Tarate P, Abhyankar A C, et al. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu [J]. Scr. Mater., 2019, 161: 28
13 Ouyang C S, Liu X B, Luo Y S, et al. High-temperature tribological properties of Ti3SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding [J]. Surf. Technol., 2020, 49(8): 161
欧阳春生, 刘秀波, 罗迎社等. 304不锈钢表面激光制备Ti3SiC2-Ni基自润滑复合涂层的高温摩擦学性能 [J]. 表面技术, 2020, 49(8): 161
14 Wang W L, Hu L, Luo S B, et al. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy [J]. Intermetallics, 2016, 77: 41
15 Gao X Y, Liu N, Jin Y X, et al. Microstructural evolution and hardness of CoxCrCuFeNi high-entropy alloys [J]. Mater. Sci. Forum 2014, 789: 79
16 Chen X M, Wang X N, Liu Z G, et al. Effect of Cu content on microstructure transformation and mechanical properties of Fe-Al dissimilar laser welded joints [J]. Opt. Laser Technol., 2020, 126: 106078
17 Guo T, Li J S, Wang J, et al. Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy [J]. Intermetallics, 2017, 86: 110
18 Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626
邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626
19 Bai Y, Akita M, Uematsu Y, et al. Improvement of fatigue properties in type 304 stainless steel by annealing treatment in nitrogen gas [J]. Mater. Sci. Eng., 2014, A607: 578
20 Yuan X J, Tang K L, Deng Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer [J]. Mater. Des., 2013, 52: 359
21 Tao W J, Zhang W Q, Fu H M. Diffusion behavior of Cu and Ni atoms in CuCoCrFeNi high entropy alloy [J]. Trans. Mater. Heat Treat., 2017, 38(11): 34
陶文静, 张伟强, 付华萌. Cu和Ni原子在高熵合金CuCoCrFeNi中的扩散行为 [J]. 材料热处理学报, 2017, 38(11): 34
22 Hao X H, Dong H G, Xia Y Q, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100 - xCux high-entropy alloy interlayer [J]. J. Alloys Compd., 2019, 803: 649
23 Nagase T, Todai M, Nakano T. Liquid phase separation in Ag-Co-Cr-Fe-Mn-Ni, Co Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B high entropy alloys for biomedical application [J]. Crystals, 2020, 10: 527
24 Wang Z H, Wang H, He D Y, et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding [J]. Rare Met. Mater. Eng., 2015, 44: 644
王智慧, 王 虎, 贺定勇等. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究 [J]. 稀有金属材料与工程, 2015, 44: 644
25 Oh S M, Hong S I. Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys [J]. Mater. Chem. Phys., 2018, 210: 120
26 Qin J C, Cui R J, Huang Z H., et al. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy [J].
J. Aeronaut. Mater., 2017, 37(3): 24秦健朝, 崔仁杰, 黄朝晖等. 小角度晶界对DD5镍基单晶高温合金力学性能的影响 [J]. 航空材料学报, 2017, 37(3): 24
27 Liu B, Eisenlohr P, Roters F, et al. Simulation of dislocation penetration through a general low-angle grain boundary [J]. Acta Mater., 2012, 60: 5380
28 Hughes D A, Liu Q, Chrzan D C, et al. Scaling of microstructural parameters: Misorientations of deformation induced boundaries [J]. Acta Mater., 1997, 45: 105
29 Hao Y P, Tan C W, Yu X D, et al. Effect of grain boundary misorientation angle on diffusion behavior in molybdenum-tungsten systems [J]. J. Alloys Compd., 2020, 819: 152975
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!