|
|
Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel |
LI Juan1, ZHAO Honglong1( ), ZHOU Nian2, ZHANG Yingzhe3, QIN Qingdong1( ), SU Xiangdong1 |
1.Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China 2.School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China 3.Special Functional Materials Collaborative Innovation Center of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China |
|
Cite this article:
LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel. Acta Metall Sin, 2021, 57(12): 1567-1578.
|
Abstract During fusion welding of the Cu-containing high-entropy alloy (HEA) of CoCrFeNiCu, Cu precipitates at the grain boundary and reduces the welding quality and mechanical properties. Solid-phase diffusion welding is connected with the diffusion of elements, which reduces the segregation of Cu and solves this problem well. In the present work, the study of diffusion welding of CoCrFeNiCu HEA with 304 stainless steel (304SS) was carried by SEM, EBSD, TEM, and XRD. The properties of the microstructure and crystal type were obtained. The results show that element diffusion can achieve high-quality connection between the two metals. As the temperature increases, the diffusion capacity increases. The pores at the interface disappear. The thickness of the diffusion layer is between 10-31 μm, without forming intermetallic compound, which shows that a solid solution microstructure is formed after diffusion. According to the XRD, this microstructure is mainly as CoCrFeNiCuMn, that leads to an improvement in the mechanical properties. The hardness of the CoCrFeNiCu HEA-diffusion layer-304SS shows a gradient increase. The crystal structure type is mainly as substructured and recrystallized structure. The proportion of low-angle grain boundaries is 93% in the diffusion layer. The EBSD test results show that the grain orientation of the welded joint (diffusion layer) has changed, mostly concentrated on the (111) plane. This also causes anisotropy of the mechanical properties. Tensile performance test showed that the material fractured in the CoCrFeNiCu HEA base material area. These show that diffusion welding achieves a high-quality connection of the two materials.
|
Received: 19 January 2021
|
|
Fund: National Natural Science Foundation of China(51964011);Guizhou Province Science Technology Plan Project([2020]1Y235);Guizhou Province Process Industry New Process Engineering Research Center([2017]021);Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province([2016] 5104) |
About author: QIN Qingdong, professor, Tel: 18185000402, E-mail: 20140441@git.edu.cnZHAO Honglong, associate professor, Tel: 15885085686, E-mail: 20201015@git.edu.cn
|
1 |
Murty B S, Yeh J W, Ranganathan S. High-Entropy Alloys [M]. Amsterdam: Elsevier, 2014: 5
|
2 |
Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications [M]. Switzerland: Springer, 2016: 12
|
3 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
4 |
Bhattacharjee T, Zheng R X, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 207
|
5 |
Sanchez J M, Vicario I, Albizuri J, et al. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys [J]. J. Mater. Res. Technol., 2019, 8: 795
|
6 |
Li P, Wang S, Xia Y Q, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45: 59
|
7 |
Li P, Sun H T, Wang S, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to GH4169 superalloy [J]. Mater. Sci. Eng., 2020, A793: 139843
|
8 |
Lei Y, Hu S P, Yang T L, et al. Vacuum diffusion bonding of high-entropy Al0.85CoCrFeNi alloy to TiAl intermetallic [J]. J. Mater. Process. Technol., 2020, 278: 116455
|
9 |
Li P, Sun H T, Wang S, et al. Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Alloys Compd., 2020, 814: 152322
|
10 |
Ding W, Wang X J, Liu N, et al. Diffusion bonding of copper and 304 stainless steel with an interlayer of CoCrFeMnNi high-entropy alloy [J]. Acta Metall. Sin., 2020, 56: 1084
|
|
丁 文, 王小京, 刘 宁等. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究 [J]. 金属学报, 2020, 56: 1084
|
11 |
Liu Y L, Luo Y C, Zhao D, et al. Interfacial behavior and joint performance of high-entropy alloy CoCrFeMnNi and pure Cu joints obtained by vacuum diffusion welding [J].
|
|
J. Mech. Eng., 2017, 53(2): 84刘玉林, 罗永春, 赵 丹等. 高熵合金(CoCrFeMnNi)/铜真空扩散连接的界面行为及接头性能研究 [J]. 机械工程学报, 2017, 53(2): 84
|
12 |
Verma A, Tarate P, Abhyankar A C, et al. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu [J]. Scr. Mater., 2019, 161: 28
|
13 |
Ouyang C S, Liu X B, Luo Y S, et al. High-temperature tribological properties of Ti3SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding [J]. Surf. Technol., 2020, 49(8): 161
|
|
欧阳春生, 刘秀波, 罗迎社等. 304不锈钢表面激光制备Ti3SiC2-Ni基自润滑复合涂层的高温摩擦学性能 [J]. 表面技术, 2020, 49(8): 161
|
14 |
Wang W L, Hu L, Luo S B, et al. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy [J]. Intermetallics, 2016, 77: 41
|
15 |
Gao X Y, Liu N, Jin Y X, et al. Microstructural evolution and hardness of CoxCrCuFeNi high-entropy alloys [J]. Mater. Sci. Forum 2014, 789: 79
|
16 |
Chen X M, Wang X N, Liu Z G, et al. Effect of Cu content on microstructure transformation and mechanical properties of Fe-Al dissimilar laser welded joints [J]. Opt. Laser Technol., 2020, 126: 106078
|
17 |
Guo T, Li J S, Wang J, et al. Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy [J]. Intermetallics, 2017, 86: 110
|
18 |
Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626
|
|
邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626
|
19 |
Bai Y, Akita M, Uematsu Y, et al. Improvement of fatigue properties in type 304 stainless steel by annealing treatment in nitrogen gas [J]. Mater. Sci. Eng., 2014, A607: 578
|
20 |
Yuan X J, Tang K L, Deng Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer [J]. Mater. Des., 2013, 52: 359
|
21 |
Tao W J, Zhang W Q, Fu H M. Diffusion behavior of Cu and Ni atoms in CuCoCrFeNi high entropy alloy [J]. Trans. Mater. Heat Treat., 2017, 38(11): 34
|
|
陶文静, 张伟强, 付华萌. Cu和Ni原子在高熵合金CuCoCrFeNi中的扩散行为 [J]. 材料热处理学报, 2017, 38(11): 34
|
22 |
Hao X H, Dong H G, Xia Y Q, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100 - xCux high-entropy alloy interlayer [J]. J. Alloys Compd., 2019, 803: 649
|
23 |
Nagase T, Todai M, Nakano T. Liquid phase separation in Ag-Co-Cr-Fe-Mn-Ni, Co Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B high entropy alloys for biomedical application [J]. Crystals, 2020, 10: 527
|
24 |
Wang Z H, Wang H, He D Y, et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding [J]. Rare Met. Mater. Eng., 2015, 44: 644
|
|
王智慧, 王 虎, 贺定勇等. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究 [J]. 稀有金属材料与工程, 2015, 44: 644
|
25 |
Oh S M, Hong S I. Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys [J]. Mater. Chem. Phys., 2018, 210: 120
|
26 |
Qin J C, Cui R J, Huang Z H., et al. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy [J].
|
|
J. Aeronaut. Mater., 2017, 37(3): 24秦健朝, 崔仁杰, 黄朝晖等. 小角度晶界对DD5镍基单晶高温合金力学性能的影响 [J]. 航空材料学报, 2017, 37(3): 24
|
27 |
Liu B, Eisenlohr P, Roters F, et al. Simulation of dislocation penetration through a general low-angle grain boundary [J]. Acta Mater., 2012, 60: 5380
|
28 |
Hughes D A, Liu Q, Chrzan D C, et al. Scaling of microstructural parameters: Misorientations of deformation induced boundaries [J]. Acta Mater., 1997, 45: 105
|
29 |
Hao Y P, Tan C W, Yu X D, et al. Effect of grain boundary misorientation angle on diffusion behavior in molybdenum-tungsten systems [J]. J. Alloys Compd., 2020, 819: 152975
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|