|
|
Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP |
JIANG Jufu1( ), ZHANG Yihao1, LIU Yingze1, WANG Ying2, XIAO Guanfei1, ZHANG Ying1 |
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
Cite this article:
JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP. Acta Metall Sin, 2021, 57(6): 703-716.
|
Abstract Semi-solid metal processing is a metal-forming technology that combines the advantages of casting and forging, realizing near-net forming high-performance parts with complex structures. Research on semi-solid processing of AlSi7Mg alloys mainly focuses on rheology, and the preparation of high solid fraction AlSi7Mg semi-solid billets by the solid phase method has been largely neglected. In fact, semi-solid technology is more significant than casting at higher solid fractions. The present study investigates semi-solid billets of AlSi7Mg aluminum alloy with a high solid fraction, prepared by the recrystallization and partial re-melting (RAP) method. The effects of upsetting temperature, compression ratio, semi-solid isothermal treatment temperature, and holding time on the billet microstructure were investigated by DSC test, upsetting experiment, semi-solid isothermal treatment experiment, OM observations, and Image Pro Plus image processing software. The microstructure of the semi-solid billet during isothermal compression was slightly affected by temperature but was beneficially refined by increasing the compression ratio. The optimal hot upsetting parameters were 240oC and 40% deformation. During the semi-solid isothermal treatment, increasing the holding temperature gradually increased the size of the solid phase grains in the microstructure. As the holding time increased, the solid phase particles in the semi-solid structure initially grew slowly, and thereafter rapidly grew to a stable size. The changes in roundness of the solid particles were more complicated. The average grain size of the billet prepared by the RAP method was 64~117 μm, and the shape factor was 0.76~0.89. The linear relationship between cubic coarsening of the average semi-solid grain size and isothermal time was nonobvious at isothermal temperatures below 599oC but was evident at temperatures of 599oC. Below 599oC, the grain coarsening is affected by Ostwald ripening, coalescence, recrystallization, and melting; while at 599oC, the grain coarsening was dominated by Ostwald ripening.
|
Received: 13 July 2020
|
|
Fund: National Key Research and Development Program of China(2019YFB2006500);National Natural Science Foundation of China(51875124) |
About author: JIANG Jufu, professor, Tel: 18746013176, E-mail: jiangjufu@hit.edu.cn
|
1 |
Bai J Y. Application of aluminum alloy material and its forming technology [J]. World Nonferrous Met., 2017, (14): 272
|
|
白嘉远. 铝合金材料的应用及其加工成形技术 [J]. 世界有色金属, 2017, (14): 272
|
2 |
Pan F S, Zhang D F, et al. Aluminum Alloy and Application [M]. Beijing: Chemical Industry Press, 2006: 341
|
|
潘复生, 张丁非等. 铝合金及应用 [M]. 北京: 化学工业出版社, 2006: 341
|
3 |
Li J. Lightweight commercial vehicle and application of aluminum alloy in modern automobile production [J]. Autom. Appl. Technol., 2020, (1): 178
|
|
李 剑. 商用汽车轻量化及铝合金在现代汽车生产中的应用 [J]. 汽车实用技术, 2020, (1): 178
|
4 |
Xie G N. Effective application of aluminum alloy in marine and marine engineering [J]. Mar. Equip./Mater. Mark., 2019, (1): 49
|
|
谢光能. 铝合金在船舶和海洋工程中的有效应用 [J]. 船舶物资与市场, 2019, (1): 49
|
5 |
Zhang Y. Application of aluminum alloy to aerospace industry [J]. Alum. Fabr., 2009, (3): 50
|
|
张 钰. 铝合金在航天航空中的应用 [J]. 铝加工, 2009, (3): 50
|
6 |
Zhu L. Preparation and thixoforming of A356 alloy semi-solid billet [D]. Harbin: Harbin Institute of Technology, 2019
|
|
朱 亮. A356铝合金半固态坯制备及触变成形工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
7 |
Zeng L. Research on fabricating and thixoforming of semisolid billet via semisolid isothermal treatment of hot rolled 2A12 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2018
|
|
曾 力. 热轧态2A12铝合金半固态等温处理制坯及触变成形研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
|
8 |
Chen G. Research on thixoforming and defect controlling of high performance wrought aluminum alloys [D]. Harbin: Harbin Institute of Technology, 2013
|
|
陈 刚. 高强变形铝合金触变成形及缺陷控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
|
9 |
Koç M, Vazquez V, Witulski T, et al. Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys [J]. J. Mater. Process. Technol., 1996, 59: 106
|
10 |
Spencer D B. Rheology of liquid-solid mixtures of lead-tin [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1971
|
11 |
Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range [J]. Met. Mater. Trans., 1972, 3B: 1925
|
12 |
Luo S J, Jiang J F, Du Z M. New research development, industrial application and some thinking of semi-solid metal forming [J]. Chin. J. Mech. Eng., 2003, 39(11): 52
|
|
罗守靖, 姜巨福, 杜之明. 半固态金属成形研究的新进展、工业应用及其思考 [J]. 机械工程学报, 2003, 39(11): 52
|
13 |
Chen G. Research on inhomogeneity of microstructure and mechanical properties for 2A50 aluminum alloy prepared by thixoforging [D]. Harbin: Harbin Institute of Technology, 2009
|
|
陈 刚. 2A50铝合金半固态模锻成形的组织性能不均匀性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2009
|
14 |
Gao J Z. Microstructure and properties of A201 aluminum alloy with high solid faction semisolid die-casting process [D]. Beijing: University of Science and Technology Beijing, 2019
|
|
郜俊震. A201铝合金高固相分数半固态压铸行为与组织性能研究 [D]. 北京: 北京科技大学, 2019
|
15 |
Pan S, Li Q, Yu B Y, et al. Research progress of Mg alloy semisolid forming [J]. Rare Met. Mater. Eng., 2019, 48: 2379
|
|
潘 帅, 李 强, 于宝义等. 镁合金半固态研究进展 [J]. 稀有金属材料与工程, 2019, 48: 2379
|
16 |
Luo X Q, Li Z Y, Yan Q Z. The research progress of semi-solid metal forming technology [J]. New Technol. New Process, 2015, (6): 135
|
|
罗晓强, 李正阳, 燕青芝. 半固态金属成形技术的研究进展 [J]. 新技术新工艺, 2015, (6): 135
|
17 |
Zhang S G. Study on technology of the rheo-squeeze casting process for aluminum alloys [D]. Nanchang: Nanchang University, 2018
|
|
张树国. 铝合金流变挤压铸造成形技术基础研究 [D]. 南昌: 南昌大学, 2018
|
18 |
Yu Z T, Zhang H H, Shao G J, et al. Study of solid content in aluminum alloys reheated to semisolid state by DSC [J]. Phys. Exam. Test., 2002, (1): 22
|
|
余忠土, 张恒华, 邵光杰等. 半固态铝合金中固相分数差热扫描法的研究 [J]. 物理测试, 2002, (1): 22
|
19 |
Cheng S J. Study on semi-solid ZL101 aluminum alloy preparation and squeeze casting process [D]. Taiyuan: North University of China, 2016
|
|
程书建. 半固态ZL101铝合金制备及挤压铸造工艺研究 [D]. 太原: 中北大学, 2016
|
20 |
Jiang J F, Liu Y Z, Xiao G F, et al. Effects of plastic deformation of solid phase on mechanical properties and microstructure of wrought 5A06 aluminum alloy in directly semisolid thixoforging [J]. J. Alloys Compd., 2020, 831: 154748
|
21 |
Liu Z, Chen Z P, Chen T. Effects of crucible size and electromagnetic frequency on flow during fabrication of semisolid A356 Al alloy slurry [J]. Acta Metall. Sin., 2018, 54: 435
|
|
刘 政, 陈志平, 陈 涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响 [J]. 金属学报, 2018, 54: 435
|
22 |
Liu Z, Mao W M, Zhao Z D. Semi-solid A356 alloy slurry prepared by a new process [J]. Acta Metall. Sin., 2009, 45: 507
|
|
刘 政, 毛卫民, 赵振铎. 新工艺制备半固态A356铝合金浆料 [J]. 金属学报, 2009, 45: 507
|
23 |
Mao W M, Zhao A M, Cui C L, et al. Research on the continuous cast billets of semi-solid AlSi7Mg alloy and their microstructure formation [J]. Acta Metall. Sin., 2000, 36: 539
|
|
毛卫民, 赵爱民, 崔成林等. AlSi7Mg合金半固态连铸坯料和组织形成研究 [J]. 金属学报, 2000, 36: 539
|
24 |
Liu G J, Zhang K, Zhang Y Z, et al. Continuous production and research of semisolid AlSi7Mg alloy [J]. Acta Metall. Sin., 1999, 35: 141
|
|
刘国钧, 张 奎, 张永忠等. 半固态AlSi7Mg铝合金的连续制备实验与研究 [J]. 金属学报, 1999, 35: 141
|
25 |
Tian Z F, Zhang Z F, Xu J, et al. Effect of electromagnetic stirring on microstructures of AlSi7Mg alloys [J]. Hot Work. Technol., 2006, 35(9): 46
|
|
田战峰, 张志峰, 徐 骏等. 电磁搅拌对AlSi7Mg合金显微组织的影响 [J]. 热加工工艺, 2006, 35(9): 46
|
26 |
Dai G X. Study on preparation of AlSi7Mg alloy semi-solid billets by melt isothermal treatment process [D]. Hefei: Hefei University of Technology, 2006
|
|
戴光星. 熔体等温处理法制备AlSi7Mg合金半固态坯料的研究 [D]. 合肥: 合肥工业大学, 2006
|
27 |
Chen C P, Tsao C Y A. Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior [J]. Acta Mater., 1997, 45: 1955
|
28 |
Tzimas E, Zavaliangos A. Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content [J]. Acta Mater., 1999, 47: 517
|
29 |
Chen Q, Chen G, Ji X H, et al. Compound forming of 7075 aluminum alloy based on functional integration of plastic deformation and thixoformation [J]. J. Mater. Process. Technol., 2017, 246: 167
|
30 |
Kirkwood D H, Sellars C M, Eliasboyed L G. Thixotropic materials [P]. US Pat, 5037489, 1991
|
31 |
Kiuchi M, Kopp R. Mushy/semi-solid metal forming technology—Present and future [J]. CIRP Ann., 2002, 51: 653
|
32 |
Atkinson H V, Liu D. Coarsening rate of microstructure in semi-solid aluminium alloys [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1672
|
33 |
Fu J L, Wang S X, Wang K K. Influencing factors of the coarsening behaviors for 7075 aluminum alloy in the semi-solid state [J]. J. Mater. Sci., 2018, 53: 9790
|
34 |
Jiang J F, Wang Y, Xiao G F, et al. Comparison of microstructural evolution of 7075 aluminum alloy fabricated by SIMA and RAP [J]. J. Mater. Process. Technol., 2016, 238: 361
|
35 |
Zhang D Y, Dong H B, Atkinson H. What is the process window for semi-solid processing? [J]. Metall. Mater. Trans., 2016, 47A: 1
|
36 |
Wei B. Research no microstructure evolution and deformation behavior of 7075 aluminum alloy in high temperature solid and semi-solid state [D]. Harbin: Harbin Institute of Technology, 2015
|
|
魏 斌. 7075铝合金高温固态-半固态组织演变及变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
|
37 |
Xiao X Q. Research on preparation and thixoforming of semi-solid billet of 5A06 wrought aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2018
|
|
肖信权. 5A06变形铝合金半固态坯料制备及其触变成形研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
|
38 |
Xia D. Microstructure evolution and formation mechanism of semi-solid 7075 aluminum alloys fabricated by plastic predeformation [D]. Chongqing: Chongqing University, 2015
|
|
夏 丹. 预变形法制备7075铝合金坯料的半固态微观组织演变规律及形成机制 [D]. 重庆: 重庆大学, 2015
|
39 |
Jiang J F, Wang Y, Atkinson H V. Microstructural coarsening of 7005 aluminum alloy semisolid billets with high solid fraction [J]. Mater. Charact., 2014, 90: 52
|
40 |
Tzimas E, Zavaliangos A. Evolution of near-equiaxed microstructure in the semisolid state [J]. Mater. Sci. Eng., 2000, A289: 228
|
41 |
Ma M Z. Research on microstructure evolution and mechanical behavior of 7075 aluminum alloy thixoforming at high solid fraction [D]. Ji'nan: Shandong University, 2018
|
|
马民壮. 7075铝合金高固相率触变成形的微观组织演变和力学行为研究 [D]. 济南: 山东大学, 2018
|
42 |
Jiang J F, Peng Q C, Shan W W, et al. Preparation of semi-solid AZ91D billets by new SIMA method [J]. Spec. Cast. Nonferrous Alloys, 2005, 25: 740
|
|
姜巨福, 彭秋才, 单巍巍等. 新SIMA法制备AZ91D半固态坯 [J]. 特种铸造及有色合金, 2005, 25: 740
|
43 |
Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
|
44 |
Wagner C. Theory of the ageing of precipitates by redissolution (Ostwald maturing) [J]. Z. Elektrochem., 1961, 65: 581
|
45 |
Bolouri A, Shahmiri M, Kang C G. Coarsening of equiaxed microstructure in the semisolid state of aluminum 7075 alloy through SIMA processing [J]. J. Mater. Sci., 2012, 47: 3544
|
46 |
Wang Y F, Zhao S D, Zhao X Z, et al. Microstructural coarsening of 6061 aluminum alloy semi-solid billets prepared via recrystallization and partial melting [J]. J. Mech. Sci. Technol., 2017, 31: 3917
|
47 |
Chen Q, Luo S J, Zhao Z D. Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting [J]. J. Alloys Compd., 2009, 477: 726
|
48 |
Chen T J, Hao Y, Sun J. Microstructural evolution of previously deformed ZA27 alloy during partial remelting [J]. Mater. Sci. Eng., 2002, A337: 73
|
49 |
Jiang J F, Xiao G F, Wang Y, et al. Microstructure evolution of wrought nickel based superalloy GH4037 in the semi-solid state [J]. Mater. Charact., 2018, 141: 229
|
50 |
Bolouri A, Shahmiri M, Kang C G. Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process [J]. J. Alloys Compd., 2011, 509: 402
|
51 |
Wang S C, Li Y Y, Chen W P, et al. Novel partial remelting process and microstructure evolution of semi-solid 2024 alloy [J]. Rare Met. Mater. Eng., 2009, 38(suppl.): 192
|
|
王顺成, 李元元, 陈维平等. 半固态2024合金部分重熔新工艺与组织演变 [J]. 稀有金属材料与工程, 2009, 38(): 192
|
52 |
Hu H Q. Metal Solidification Principle [M]. 2nd Ed., Beijing: China Machine Press, 2012: 46
|
|
胡汉起. 金属凝固原理 [M]. 第2版. 北京: 机械工业出版社, 2012: 46
|
53 |
Sistaninia M, Phillion A B, Drezet J M, et al. Three-dimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding [J]. Acta Mater., 2012, 60: 3902
|
54 |
Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment [J]. Acta Mater., 2006, 54: 689
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|