|
|
Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys |
Yaohong LIU,Zhaohui WANG( ),Ke LIU,Shubo LI,Wenbo DU |
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
|
Cite this article:
Yaohong LIU,Zhaohui WANG,Ke LIU,Shubo LI,Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys. Acta Metall Sin, 2019, 55(3): 389-398.
|
Abstract Mg-Zn-Er casting magnesium alloys have good properties, such as high specific strength, high specific stiffness and remarkable temperature creep properties. Current researches mainly focused on the phases and mechanical properties at room and high temperatures. However, the effect of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys was barely studied. In this work, a modified RDG (Rappaz-Drezet-Gremaud) model for predicting the hot cracking susceptibility of Mg-5Zn-xEr (x=0.83, 1.25, 2.5, 5, mass fraction, %) ternary alloys was proposed, which considered the effects of phase and solidification temperature range on the hot cracking susceptibility of the multiphase alloys. And, the hot cracking susceptibility was evaluated by the experiment of constrained rod casting (CRC). The results indicated that the modified RDG model could accurately predict the hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys. The hot cracking susceptibility increased with the addition of Er up to 2.5%, and Mg-5Zn-2.5Er alloy showed the maximal hot cracking susceptibility; when the addition of Er increased to 5.0%, Mg-5Zn-5Er alloy exhibited the minimal hot cracking susceptibility. The calculated results were consistent with the experimental ones. Further analysis on the casting solidification curves, phases and microstructures showed that I-phase precipitated by peritectic reaction during solidification of Mg-5Zn-2.5Er alloy depleted liquid phases and extended the solidification temperature range of the alloy, leading to the hot cracking susceptibility increasing. The Mg-5Zn-5Er alloy underwent eutectic reaction of L→α-Mg+W during solidification, which reduced the solidification temperature range. Meanwhile, this process was beneficial to feeding the interdendritic hot cracking in the terminal period of solidification, which significantly decreased the hot cracking susceptibility of Mg-5Zn-5Er alloy.
|
Received: 30 August 2018
|
|
Fund: National Key Research and Development Program of China(2016YFB0301001);Natural Science Foundation of Beijing(2162003) |
[1] | Song J, Xiong S M. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy [J]. J. Alloys Compd., 2011, 509: 1866 | [2] | Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46 | [3] | Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211 | [4] | Nasr Esfahani M R, Niroumand B. Study of hot tearing of A206 aluminum alloy using instrumented constrained T-shaped casting method [J]. Mater. Charact., 2010, 61: 318 | [5] | Liu J W, Kou S D. Susceptibility of ternary aluminum alloys to cracking during solidification [J]. Acta Mater., 2017, 125: 513 | [6] | Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115 | [7] | Shin J, Kim T, Kim D E, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications [J]. J. Alloys Compd., 2017, 698: 577 | [8] | Huang H, Fu P H, Wang Y X, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 922 | [9] | Stangeland A, Mo A, M' Hamdi M, et al. Thermal strain in the mushy zone related to hot tearing [J]. Metall. Mater. Trans., 2006, 37A: 705 | [10] | Easton M A, Wang H, Grandfield J, et al. Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys [J]. Metall. Mater. Trans., 2012, 43A: 3227 | [11] | Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629 | [12] | Lahaie D J, Bouchard M. Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing [J]. Metall. Mater. Trans., 2001, 32B: 697 | [13] | Suyitno, Kool W H, Katgerman L. Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy [J]. Metall. Mater. Trans., 2005, 36A: 1537 | [14] | Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449 | [15] | Suyitno, Kool W H, Katgerman L. Integrated approach for prediction of hot tearing [J]. Metall. Mater. Trans., 2009, 40A: 2388 | [16] | Kou S D. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366 | [17] | Srinivasan A, Huang Y, Mendis C L, et al. Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys [J]. Mater. Sci. Eng., 2014, A595: 224 | [18] | Luo Z P, Zhang S Q, Tang Y L, et al. Quasicrystals in as-cast Mg-Zn-RE alloys [J]. Scr. Metall. Mater., 1993, 28: 1513 | [19] | Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles [J]. Acta Mater., 2002, 50: 2343 | [20] | Luo Z P, Zhang S Q. Comment on the so-called Z-phase in magnesium alloys containing zinc and rare-earth elements [J]. J. Mater. Sci. Lett., 1993, 12: 1490 | [21] | Liu K, Wang Q F, Du W B, et al. Failure mechanism of as-cast Mg-6Zn-2Er alloy during tensile test at room temperature [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3193 | [22] | Lee J Y, Kim D H, Lim H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys [J]. Mater. Lett., 2005, 59: 3801 | [23] | Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259 | [24] | Li H, Du W B, Li J H, et al. Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1212 | [25] | Wei Z Q, Liu Z, Wang Z, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Chin. J. Nonferrous Met., 2018, 28: 233 | [25] | 魏子淇, 刘 正, 王 志等. 钇对Mg-Zn-Y-Zr合金热裂敏感性影响 [J]. 中国有色金属学报, 2018, 28: 233 | [26] | Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing formation mechanism of Mg-Zn-Y-Zr alloys [J]. Mater. Sci. Technol., 2014, 30: 1214 | [27] | Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108 | [28] | Gunde P, Schiffl A, Uggowitzer P J. Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys [J]. Mater. Sci. Eng., 2010, A527: 7074 | [29] | Xu R F. Study on hot tearing formation in hypoeutectic Al-Si alloys [D]. Jinan: Shandong University, 2014 | [29] | 许荣福. 亚共晶Al-Si合金热裂形成过程的研究 [D]. 济南: 山东大学, 2014 | [30] | Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magn. Alloys, 2016, 4: 151 | [31] | Zhou Y, Mao P L, Wang Z, et al. Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys [J]. Acta Metall. Sin., 2017, 53: 851 | [31] | 周 野, 毛萍莉, 王 志等. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究 [J]. 金属学报, 2017, 53: 851 | [32] | Zhang S B. Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014 | [32] | 张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014 | [33] | Cao G, Kou S. Hot tearing of ternary Mg-Al-Ca alloy castings [J]. Metall. Mater. Trans., 2006, 37A: 3647 | [34] | Easton M A, Gibson M A, Zhu S M, et al. An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys [J]. Metall. Mater. Trans., 2014, 45A: 3586 | [35] | Farup I, Mo A. Two-phase modeling of mushy zone parameters associated with hot tearing [J]. Metall. Mater. Trans., 2000, 31A: 1461 | [36] | Ludwig O, Drezet J M, Martin C L, et al. Rheological behavior of Al-Cu alloys during solidification: Constitutive modeling, experimental identification, and numerical study [J]. Metall. Mater. Trans., 2005, 36A: 1525 | [37] | Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundrymen, 1981, 74: 65 | [38] | Vernède S, Jarry P, Rappaz M. A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding [J]. Acta Mater., 2006, 54: 4023 | [39] | Vernède S, Dantzig J A, Rappaz M. A mesoscale granular model for the mechanical behavior of alloys during solidification [J]. Acta Mater., 2009, 57: 1554 | [40] | Li H. Research on composition range for icosahedral quasicrystalline phase and mechanical properties of as-cast Mg-Zn-Er alloys [D]. Beijing: Beijing University of Technology, 2011 | [40] | 李 晗. Mg-Zn-Er镁合金准晶相的形成规律及性能研究 [D]. 北京: 北京工业大学, 2011 | [41] | Li J H. Study on microstructure and mechanical properties of Mg-Zn-Er alloy reinforced by icosahedral quasicrystalline phase [D]. Beijing: Beijing University of Technology, 2010 | [41] | 李建辉. 准晶增强Mg-Zn-Er合金显微组织及性能的研究 [D]. 北京: 北京工业大学, 2010 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|