Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys
Yaohong LIU,Zhaohui WANG(),Ke LIU,Shubo LI,Wenbo DU
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Cite this article:
Yaohong LIU,Zhaohui WANG,Ke LIU,Shubo LI,Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys. Acta Metall Sin, 2019, 55(3): 389-398.
Mg-Zn-Er casting magnesium alloys have good properties, such as high specific strength, high specific stiffness and remarkable temperature creep properties. Current researches mainly focused on the phases and mechanical properties at room and high temperatures. However, the effect of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys was barely studied. In this work, a modified RDG (Rappaz-Drezet-Gremaud) model for predicting the hot cracking susceptibility of Mg-5Zn-xEr (x=0.83, 1.25, 2.5, 5, mass fraction, %) ternary alloys was proposed, which considered the effects of phase and solidification temperature range on the hot cracking susceptibility of the multiphase alloys. And, the hot cracking susceptibility was evaluated by the experiment of constrained rod casting (CRC). The results indicated that the modified RDG model could accurately predict the hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys. The hot cracking susceptibility increased with the addition of Er up to 2.5%, and Mg-5Zn-2.5Er alloy showed the maximal hot cracking susceptibility; when the addition of Er increased to 5.0%, Mg-5Zn-5Er alloy exhibited the minimal hot cracking susceptibility. The calculated results were consistent with the experimental ones. Further analysis on the casting solidification curves, phases and microstructures showed that I-phase precipitated by peritectic reaction during solidification of Mg-5Zn-2.5Er alloy depleted liquid phases and extended the solidification temperature range of the alloy, leading to the hot cracking susceptibility increasing. The Mg-5Zn-5Er alloy underwent eutectic reaction of L→α-Mg+W during solidification, which reduced the solidification temperature range. Meanwhile, this process was beneficial to feeding the interdendritic hot cracking in the terminal period of solidification, which significantly decreased the hot cracking susceptibility of Mg-5Zn-5Er alloy.
Table 1 Compositions of Mg-5Zn-xEr alloys (mass fraction / %)
Fig.1 Schematics of hot cracking susceptibility factors including rod length factor (a), crack location factor (b) and crack width factor (c)
Fig.2 Schematic of hot cracking susceptibility experimental device (unit: mm)
Fig.3 Solid phase volume fraction (fs)- solidification temperature (T) curves of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5)
Alloy
Fitting function expression
R2
Mg-5Zn-0.83Er
Mg-5Zn-1.25Er
Mg-5Zn-2.5Er
Mg-5Zn-5Er
fs(T)=0.98886-3.854×10-12exp (0.042T)
fs(T)=0.971-3.09×10-9exp (0.031T)
fs(T)=0.9779-5.687×10-16exp (0.056T)
fs(T)=1.00089-9.178×10-10exp (0.033T)
0.987
0.969
0.991
0.978
Table 2 fs-T fitting function expression of Mg-5Zn-xEr alloys and correlation coefficients (R2) (x=0.83, 1.25, 2.5, 5)
Fig.4 Hot cracking susceptibilities predicted by optimized RDG model in this work () (a) and optimized RDG model of Easton (Sht) (b) of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5. fs,n―solid phase volume fraction corresponding to the coherency (fs,0) and coalescence (fs,co) points)
Fig.5 Hot cracking image of Mg-5Zn-0.83Er alloy (Arrows in Fig.5a show the macro-cracks) (a) and hot cracking susceptibilities of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5) (b) (Experiment via critical size method)
Fig.6 XRD spectra of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5)
Fig.7 SEM images (a, b, d, e) and EDS spectra of points A (c) and B (f) of Mg-5Zn-xEr alloys with x=0.83 (a, c), x=1.25 (b), x=2.5 (d) and x=5 (e, f)
Fig.8 Solidification curves of Mg-5Zn-xEr alloys (Experiment via critical size method)(a) x=0.83 (b) x=1.25 (c) x=2.5 (d) x=5
Alloy
α-Mg
W-phase
I-phase
ΔT
Mg-5Zn-0.83Er
616.4
-
438.7
177.7
Mg-5Zn-1.25Er
613.7
566.6
425.1
188.6
Mg-5Zn-2.5Er
615.3
544.9
419.8
195.5
Mg-5Zn-5Er
593.4
532.1
-
61.3
Table 3 Precipitation temperatures of various phases and solidification temperature range (ΔT) for Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5. Experiment via critical size method) (℃)
Fig.9 Hot cracking fracture morphologies of Mg-5Zn-xEr alloys (longitudinal section)(a) x=0.83 (b) x=1.25 (c) x=2.5 (d) x=5
Fig.10 Hot cracking fracture morphologies of Mg-5Zn-xEr alloys (top view)(a) x=0.83 (b) x=1.25 (c) x=2.5 (d) x=5
[1]
Song J, Xiong S M. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy [J]. J. Alloys Compd., 2011, 509: 1866
[2]
Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
[3]
Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
[4]
Nasr Esfahani M R, Niroumand B. Study of hot tearing of A206 aluminum alloy using instrumented constrained T-shaped casting method [J]. Mater. Charact., 2010, 61: 318
[5]
Liu J W, Kou S D. Susceptibility of ternary aluminum alloys to cracking during solidification [J]. Acta Mater., 2017, 125: 513
[6]
Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
[7]
Shin J, Kim T, Kim D E, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications [J]. J. Alloys Compd., 2017, 698: 577
[8]
Huang H, Fu P H, Wang Y X, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 922
[9]
Stangeland A, Mo A, M' Hamdi M, et al. Thermal strain in the mushy zone related to hot tearing [J]. Metall. Mater. Trans., 2006, 37A: 705
[10]
Easton M A, Wang H, Grandfield J, et al. Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys [J]. Metall. Mater. Trans., 2012, 43A: 3227
[11]
Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
[12]
Lahaie D J, Bouchard M. Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing [J]. Metall. Mater. Trans., 2001, 32B: 697
[13]
Suyitno, Kool W H, Katgerman L. Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy [J]. Metall. Mater. Trans., 2005, 36A: 1537
[14]
Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
[15]
Suyitno, Kool W H, Katgerman L. Integrated approach for prediction of hot tearing [J]. Metall. Mater. Trans., 2009, 40A: 2388
[16]
Kou S D. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
[17]
Srinivasan A, Huang Y, Mendis C L, et al. Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys [J]. Mater. Sci. Eng., 2014, A595: 224
[18]
Luo Z P, Zhang S Q, Tang Y L, et al. Quasicrystals in as-cast Mg-Zn-RE alloys [J]. Scr. Metall. Mater., 1993, 28: 1513
[19]
Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles [J]. Acta Mater., 2002, 50: 2343
[20]
Luo Z P, Zhang S Q. Comment on the so-called Z-phase in magnesium alloys containing zinc and rare-earth elements [J]. J. Mater. Sci. Lett., 1993, 12: 1490
[21]
Liu K, Wang Q F, Du W B, et al. Failure mechanism of as-cast Mg-6Zn-2Er alloy during tensile test at room temperature [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3193
[22]
Lee J Y, Kim D H, Lim H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys [J]. Mater. Lett., 2005, 59: 3801
[23]
Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
[24]
Li H, Du W B, Li J H, et al. Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1212
[25]
Wei Z Q, Liu Z, Wang Z, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Chin. J. Nonferrous Met., 2018, 28: 233
Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing formation mechanism of Mg-Zn-Y-Zr alloys [J]. Mater. Sci. Technol., 2014, 30: 1214
[27]
Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
[28]
Gunde P, Schiffl A, Uggowitzer P J. Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys [J]. Mater. Sci. Eng., 2010, A527: 7074
[29]
Xu R F. Study on hot tearing formation in hypoeutectic Al-Si alloys [D]. Jinan: Shandong University, 2014
[29]
许荣福. 亚共晶Al-Si合金热裂形成过程的研究 [D]. 济南: 山东大学, 2014
[30]
Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magn. Alloys, 2016, 4: 151
[31]
Zhou Y, Mao P L, Wang Z, et al. Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys [J]. Acta Metall. Sin., 2017, 53: 851
Zhang S B. Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
[32]
张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
[33]
Cao G, Kou S. Hot tearing of ternary Mg-Al-Ca alloy castings [J]. Metall. Mater. Trans., 2006, 37A: 3647
[34]
Easton M A, Gibson M A, Zhu S M, et al. An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys [J]. Metall. Mater. Trans., 2014, 45A: 3586
[35]
Farup I, Mo A. Two-phase modeling of mushy zone parameters associated with hot tearing [J]. Metall. Mater. Trans., 2000, 31A: 1461
[36]
Ludwig O, Drezet J M, Martin C L, et al. Rheological behavior of Al-Cu alloys during solidification: Constitutive modeling, experimental identification, and numerical study [J]. Metall. Mater. Trans., 2005, 36A: 1525
[37]
Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundrymen, 1981, 74: 65
[38]
Vernède S, Jarry P, Rappaz M. A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding [J]. Acta Mater., 2006, 54: 4023
[39]
Vernède S, Dantzig J A, Rappaz M. A mesoscale granular model for the mechanical behavior of alloys during solidification [J]. Acta Mater., 2009, 57: 1554
[40]
Li H. Research on composition range for icosahedral quasicrystalline phase and mechanical properties of as-cast Mg-Zn-Er alloys [D]. Beijing: Beijing University of Technology, 2011
Li J H. Study on microstructure and mechanical properties of Mg-Zn-Er alloy reinforced by icosahedral quasicrystalline phase [D]. Beijing: Beijing University of Technology, 2010