Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (2): 191-201    DOI: 10.11900/0412.1961.2018.00081
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility
Chengwei SHAO, Weijun HUI(), Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Download:  HTML  PDF(7409KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, energy conservation, environmental protection and security are the main factors considered by the automotive manufacturers. Medium-Mn steel with excellent combination of specific strength and ductility have been regarded as the potential candidates for automotive applications. The excellent combination of specific strength and ductility depends on the microstructure under different heat treatment processes of the steels. Therefore, the relationship of the combination of specific strength and ductility and microstructure should be studied in detail. A new alloy system of aluminum-containing medium-Mn steel was developed in this study. The addition of aluminum stabilizes α-ferrite, and facilitates the presence of δ-ferrite during solidification. The addition of Mn and C compensates the effect of aluminum on phase stability and ensures austenite formation. In this investigation, the effects of intercritical annealing temperature on the microstructure and tensile properties of a newly designed cold-rolled aluminum-containing medium-Mn steel (0.2C-5Mn-0.6Si-3Al, mass fraction, %) were investigated by SEM, XRD and uniaxial tensile tests. The tensile results show that an excellent combination of ultimate tensile strength (σb) of 1062 MPa, total elongation (δ) of 58.2% and σb×δ of 61.8 GPa% could be obtained after annealing at 730 ℃. The inverted austenite of the cold-rolled steel coarsenes and gradually changes its morphology from mainly lamellar to mainly equiaxed with increasing intercritical annealing temperature, and a duplex microstructure consisting of multi-scale retained austenite could be obtained at 730 ℃, which possesses suitable mechanical stability and thus presents prolonged transformation-induced plasticity (TRIP) effect during tensile deformation. This kind of sustainable TRIP effect and the cooperative deformation of ferrite are responsible for the superior mechanical properties. The investigation of tensile fracture behavior shows that the nucleation and growth of voids occurred mainly at the interfaces between soft ferrite and hard martensite induced by deformation.

Key words:  cold-rolled medium-Mn steel      intercritical annealing      microstructure      retained austenite stability     
Received:  08 March 2018     
ZTFLH:  TG111  
  TG142  
Fund: Supported by High-Level Scientific Research Foundation for the Introduction of Talent of Beijing Jiaotong University (No.M14RC00010)

Cite this article: 

Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility. Acta Metall Sin, 2019, 55(2): 191-201.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00081     OR     https://www.ams.org.cn/EN/Y2019/V55/I2/191

Fig.1  SEM images of cold rolled medium-Mn steel samples as-cold rolled (a) and 700T (b), 730T (c), 750T (d), 770T (e), 800T (f) and 850T (g), showing multiphase microstructure consists of ferrite (F), retained austenite (RA), δ-ferrite (δ-F) and/or martensite (M) (Arrows in Fig.1f show a small amount of martensites)
Fig.2  Distributions and variations of RA grain size for cold-rolled medium-Mn steel samples 700T (a), 730T (b) , 770T (c) intercritically annealed at different temperatures and then low-temperature tempered, and the variation of RA grain size (d)
Fig.3  XRD spectra of cold-rolled medium-Mn steel samples before (a) and after (b) tensile test, measured RA fractions (c) and amount of transformed RA and transformation ratio of RA (d)
Sample σs / MPa σb / MPa δ / % σb×δ / GPa%
700T 970 1054 25.7 27.1
730T 920 1062 58.2 61.8
750T 865 1140 49.1 56.0
770T 786 1214 40.6 50.9
800T 518 1293 18.3 23.7
850T 746 1379 12.4 17.1
Table 1  Tensile properties of cold-rolled medium-Mn steel samples intercritically annealed at different temperatures and then low-temperature tempered
Fig.4  Dependence of the yiled strength on the grain size (d) of RA of the cold-rolled medium-Mn steel samples intercritically annealed among 700~800 ℃
Fig.5  Engineering stress-engineering strain curves of cold-rolled medium-Mn steel samples 700T, 730T and 770T (a) and their work hardening rate (dσ/dε) curves (b~d)
Fig.6  Plots of the k parameter of samples intercritically annealed at different temperatures and then low temperature tempered
Sample Mass fraction of Mn / % Mass fraction of C / %
In RA In F In δ-F In RA
700T 6.34±0.46 5.14±0.53 4.31±0.28 0.772
730T 6.30±0.58 4.89±0.43 4.27±0.35 0.765
750T 6.27±0.50 4.84±0.40 4.27±0.15 0.727
770T 6.25±0.60 4.88±0.38 4.23±0.23 0.701
800T 6.26±0.41 4.68±0.42 4.17±0.15 0.637
850T 6.18±0.29 4.54±0.33 4.11±0.11 0.551
Table 2  EDS measured and XRD calculated concentrations of Mn and C
Fig.7  Longitudinal section SEM images of fractured tensile samples 700T (a), 730T (b), 770T (c) and 850T (d) (The thickness in uniformly strained part of sample is indicated in the case)
Fig.8  SEM images showing the microstructures near the fracture of the cold-rolled medium-Mn steel after tensile deformation for samples 700T (a), 730T (b), 770T (c) and 850T (d) (Circles on the micrographs indicate positions of voids in the F+RA (α’) constituent)
Fig.9  SEM images of the fracture surface of cold-rolled medium-Mn steel samples 700T (a) and 850T (b) after uniaxial tension test
[1] Fan C G, Dong H, Yong Q L, et al.Research development of ultra-high strength low alloy steels[J]. Mater. Mech. Eng., 2006, 30(8): 1(范长刚, 董瀚, 雍岐龙等. 低合金超高强度钢的研究进展[J]. 机械工程材料, 2006, 30(8): 1)
[2] Suh D W, Kim S J.Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scr. Mater., 2017, 126: 63
[3] Lee Y K, Han J.Current opinion in medium manganese steel[J]. Mater. Sci. Technol., 2015, 31: 843
[4] Wang L D, Ding F C, Wang B M, et al.Influence of superfine substructure on toughness of low-alloying ultra-high strength structure steel[J]. Acta Metall. Sin., 2009, 45: 292(王六定, 丁富才, 王佰民等. 低合金超高强度钢亚结构超细化对韧性的影响[J]. 金属学报, 2009, 45: 292)
[5] Dong H, Cao W Q, Shi J, et al.Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron Steel, 2011, 46(6): 1(董瀚, 曹文全, 时捷等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1)
[6] Shi J, Sun X J, Wang M Q, et al.Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scr. Mater., 2010, 63: 815
[7] Shi J, Cao W Q, Dong H. Ultrafine grained high strength low alloy steel with high strength and high ductility [J]. Mater. Sci. Forum, 2010, 654-656: 238
[8] Miller R L.Ultrafine-grained microstructures and mechanical properties of alloy steels[J]. Metall. Mater. Trans., 1972, 3B: 905
[9] Park K T, Lee E G, Lee C S.Reverse austenite transformation behavior of equal channel angular pressed low carbon ferrite/pearlite steel[J]. ISIJ Int., 2007, 47: 294
[10] Nakada N, Tsuchiyama T, Takaki S, et al.Variant selection of reversed austenite in lath martensite[J]. ISIJ Int., 2007, 47: 1527
[11] Hara T, Maruyama N, Shinohara Y, et al.Abnormal α to γ transformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate[J]. ISIJ Int., 2009, 49: 1792
[12] Wang C, Shi J, Wang C Y, et al.Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing[J]. ISIJ Int., 2011, 51: 651
[13] Xu Y B, Hu Z P, Zou Y, et al.Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite[J]. Mater. Sci. Eng., 2017, A688: 40
[14] Shao C W, Hui W J, Zhang Y J, et al.Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Mater. Sci. Eng., 2017, A682: 45
[15] Cai Z H, Ding H, Ying Z Y, et al.Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel[J]. J. Mater. Eng. Perform., 2014, 23: 1131
[16] Matlock D K, Speer J G, De Moor E, et al.Recent developments in advanced high strength sheet steels for automotive applications: An overview[J]. JESTECH, 2012, 15: 1
[17] Lacroix G, Pardoen T, Jacques P J.The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
[18] Chin K G, Kang C Y, Shin S Y, et al.Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Mater. Sci. Eng., 2011, A528: 2922
[19] Choi H, Lee S, Lee J, et al.Characterization of fracture in medium Mn steel[J]. Mater. Sci. Eng., 2017, A687: 200
[20] Fan X.Metallic X-Ray Physics [M]. Beijing: Mechanical Industry Press, 1989: 159(范雄. 金属X射线学 [M]. 北京: 机械工业出版社, 1989: 159)
[21] Zhao X L, Zhang Y J, Shao C W, et al.Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel[J]. Acta Metall. Sin., 2018, 54: 1031(赵晓丽, 张永健, 邵成伟等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54: 1031)
[22] Zhang M D, Cao W Q, Dong H, et al.Element partitioning effect on microstructure and mechanical property of the micro-laminated Fe-Mn-Al-C-dual phase steel[J]. Mater. Sci. Eng., 2016, A654: 193
[23] Hu B, Luo H W.A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity[J]. J. Alloys Compd., 2017, 725: 684
[24] Jung Y S, Lee Y K, Matlock D K, et al.Effect of grain size on strain-induced martensitic transformation start temperature in an ultrafine grained metastable austenitic steel[J]. Met. Mater. Int., 2011, 17: 553
[25] Embury D, Bouaziz O.Steel-based composites: Driving forces and classification[J]. Annu. Rev. Mater. Res., 2010, 40: 213
[26] Cai Z H, Ding H, Misra R D K, et al.Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Mater., 2015, 84: 229
[27] Li Z C, Ding H, Cai Z H, et al.Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel[J]. Mater. Sci. Eng., 2015, A639: 559
[28] Li Z C, Misra R D K,Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Mater. Sci. Eng., 2016, A673: 63
[29] Sugimoto K I, Usui N, Kobayashi M, et al.Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J]. ISIJ Int., 1992, 32: 1311
[30] Sugimoto K, Usui N, Kobayashi M, et al.Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel[J]. Metall. Mater. Trans., 1992, 23A: 3685
[31] Takaki S, Fukimaga K, Syarif J, et al.Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater. Trans., 2004, 45: 2245
[32] Matsuoka Y, Iwasaki T, Nakada N, et al.Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int., 2013, 53: 1224
[33] Avramovic-Cingara G, Saleh C A R, Jain M K, et al. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing[J]. Metall. Mater. Trans., 2009, 40A: 3117
[34] Han S K, Margolin H.Void formation, void growth and tensile fracture of plain carbon steel and a dual-phase steel[J]. Mater. Sci. Eng., 1989, A112: 133
[35] Erdogan M.The effect of new ferrite content on the tensile fracture behaviour of dual phase steels[J]. J. Mater. Sci., 2002, 37: 3623
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[14] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[15] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
No Suggested Reading articles found!