Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (2): 191-201    DOI: 10.11900/0412.1961.2018.00081
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility
Chengwei SHAO, Weijun HUI(), Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Cite this article: 

Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility. Acta Metall Sin, 2019, 55(2): 191-201.

Download:  HTML  PDF(7409KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, energy conservation, environmental protection and security are the main factors considered by the automotive manufacturers. Medium-Mn steel with excellent combination of specific strength and ductility have been regarded as the potential candidates for automotive applications. The excellent combination of specific strength and ductility depends on the microstructure under different heat treatment processes of the steels. Therefore, the relationship of the combination of specific strength and ductility and microstructure should be studied in detail. A new alloy system of aluminum-containing medium-Mn steel was developed in this study. The addition of aluminum stabilizes α-ferrite, and facilitates the presence of δ-ferrite during solidification. The addition of Mn and C compensates the effect of aluminum on phase stability and ensures austenite formation. In this investigation, the effects of intercritical annealing temperature on the microstructure and tensile properties of a newly designed cold-rolled aluminum-containing medium-Mn steel (0.2C-5Mn-0.6Si-3Al, mass fraction, %) were investigated by SEM, XRD and uniaxial tensile tests. The tensile results show that an excellent combination of ultimate tensile strength (σb) of 1062 MPa, total elongation (δ) of 58.2% and σb×δ of 61.8 GPa% could be obtained after annealing at 730 ℃. The inverted austenite of the cold-rolled steel coarsenes and gradually changes its morphology from mainly lamellar to mainly equiaxed with increasing intercritical annealing temperature, and a duplex microstructure consisting of multi-scale retained austenite could be obtained at 730 ℃, which possesses suitable mechanical stability and thus presents prolonged transformation-induced plasticity (TRIP) effect during tensile deformation. This kind of sustainable TRIP effect and the cooperative deformation of ferrite are responsible for the superior mechanical properties. The investigation of tensile fracture behavior shows that the nucleation and growth of voids occurred mainly at the interfaces between soft ferrite and hard martensite induced by deformation.

Key words:  cold-rolled medium-Mn steel      intercritical annealing      microstructure      retained austenite stability     
Received:  08 March 2018     
ZTFLH:  TG111  
  TG142  
Fund: Supported by High-Level Scientific Research Foundation for the Introduction of Talent of Beijing Jiaotong University (No.M14RC00010)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00081     OR     https://www.ams.org.cn/EN/Y2019/V55/I2/191

Fig.1  SEM images of cold rolled medium-Mn steel samples as-cold rolled (a) and 700T (b), 730T (c), 750T (d), 770T (e), 800T (f) and 850T (g), showing multiphase microstructure consists of ferrite (F), retained austenite (RA), δ-ferrite (δ-F) and/or martensite (M) (Arrows in Fig.1f show a small amount of martensites)
Fig.2  Distributions and variations of RA grain size for cold-rolled medium-Mn steel samples 700T (a), 730T (b) , 770T (c) intercritically annealed at different temperatures and then low-temperature tempered, and the variation of RA grain size (d)
Fig.3  XRD spectra of cold-rolled medium-Mn steel samples before (a) and after (b) tensile test, measured RA fractions (c) and amount of transformed RA and transformation ratio of RA (d)
Sample σs / MPa σb / MPa δ / % σb×δ / GPa%
700T 970 1054 25.7 27.1
730T 920 1062 58.2 61.8
750T 865 1140 49.1 56.0
770T 786 1214 40.6 50.9
800T 518 1293 18.3 23.7
850T 746 1379 12.4 17.1
Table 1  Tensile properties of cold-rolled medium-Mn steel samples intercritically annealed at different temperatures and then low-temperature tempered
Fig.4  Dependence of the yiled strength on the grain size (d) of RA of the cold-rolled medium-Mn steel samples intercritically annealed among 700~800 ℃
Fig.5  Engineering stress-engineering strain curves of cold-rolled medium-Mn steel samples 700T, 730T and 770T (a) and their work hardening rate (dσ/dε) curves (b~d)
Fig.6  Plots of the k parameter of samples intercritically annealed at different temperatures and then low temperature tempered
Sample Mass fraction of Mn / % Mass fraction of C / %
In RA In F In δ-F In RA
700T 6.34±0.46 5.14±0.53 4.31±0.28 0.772
730T 6.30±0.58 4.89±0.43 4.27±0.35 0.765
750T 6.27±0.50 4.84±0.40 4.27±0.15 0.727
770T 6.25±0.60 4.88±0.38 4.23±0.23 0.701
800T 6.26±0.41 4.68±0.42 4.17±0.15 0.637
850T 6.18±0.29 4.54±0.33 4.11±0.11 0.551
Table 2  EDS measured and XRD calculated concentrations of Mn and C
Fig.7  Longitudinal section SEM images of fractured tensile samples 700T (a), 730T (b), 770T (c) and 850T (d) (The thickness in uniformly strained part of sample is indicated in the case)
Fig.8  SEM images showing the microstructures near the fracture of the cold-rolled medium-Mn steel after tensile deformation for samples 700T (a), 730T (b), 770T (c) and 850T (d) (Circles on the micrographs indicate positions of voids in the F+RA (α’) constituent)
Fig.9  SEM images of the fracture surface of cold-rolled medium-Mn steel samples 700T (a) and 850T (b) after uniaxial tension test
[1] Fan C G, Dong H, Yong Q L, et al.Research development of ultra-high strength low alloy steels[J]. Mater. Mech. Eng., 2006, 30(8): 1(范长刚, 董瀚, 雍岐龙等. 低合金超高强度钢的研究进展[J]. 机械工程材料, 2006, 30(8): 1)
[2] Suh D W, Kim S J.Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scr. Mater., 2017, 126: 63
[3] Lee Y K, Han J.Current opinion in medium manganese steel[J]. Mater. Sci. Technol., 2015, 31: 843
[4] Wang L D, Ding F C, Wang B M, et al.Influence of superfine substructure on toughness of low-alloying ultra-high strength structure steel[J]. Acta Metall. Sin., 2009, 45: 292(王六定, 丁富才, 王佰民等. 低合金超高强度钢亚结构超细化对韧性的影响[J]. 金属学报, 2009, 45: 292)
[5] Dong H, Cao W Q, Shi J, et al.Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron Steel, 2011, 46(6): 1(董瀚, 曹文全, 时捷等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1)
[6] Shi J, Sun X J, Wang M Q, et al.Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scr. Mater., 2010, 63: 815
[7] Shi J, Cao W Q, Dong H. Ultrafine grained high strength low alloy steel with high strength and high ductility [J]. Mater. Sci. Forum, 2010, 654-656: 238
[8] Miller R L.Ultrafine-grained microstructures and mechanical properties of alloy steels[J]. Metall. Mater. Trans., 1972, 3B: 905
[9] Park K T, Lee E G, Lee C S.Reverse austenite transformation behavior of equal channel angular pressed low carbon ferrite/pearlite steel[J]. ISIJ Int., 2007, 47: 294
[10] Nakada N, Tsuchiyama T, Takaki S, et al.Variant selection of reversed austenite in lath martensite[J]. ISIJ Int., 2007, 47: 1527
[11] Hara T, Maruyama N, Shinohara Y, et al.Abnormal α to γ transformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate[J]. ISIJ Int., 2009, 49: 1792
[12] Wang C, Shi J, Wang C Y, et al.Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing[J]. ISIJ Int., 2011, 51: 651
[13] Xu Y B, Hu Z P, Zou Y, et al.Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite[J]. Mater. Sci. Eng., 2017, A688: 40
[14] Shao C W, Hui W J, Zhang Y J, et al.Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Mater. Sci. Eng., 2017, A682: 45
[15] Cai Z H, Ding H, Ying Z Y, et al.Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel[J]. J. Mater. Eng. Perform., 2014, 23: 1131
[16] Matlock D K, Speer J G, De Moor E, et al.Recent developments in advanced high strength sheet steels for automotive applications: An overview[J]. JESTECH, 2012, 15: 1
[17] Lacroix G, Pardoen T, Jacques P J.The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
[18] Chin K G, Kang C Y, Shin S Y, et al.Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Mater. Sci. Eng., 2011, A528: 2922
[19] Choi H, Lee S, Lee J, et al.Characterization of fracture in medium Mn steel[J]. Mater. Sci. Eng., 2017, A687: 200
[20] Fan X.Metallic X-Ray Physics [M]. Beijing: Mechanical Industry Press, 1989: 159(范雄. 金属X射线学 [M]. 北京: 机械工业出版社, 1989: 159)
[21] Zhao X L, Zhang Y J, Shao C W, et al.Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel[J]. Acta Metall. Sin., 2018, 54: 1031(赵晓丽, 张永健, 邵成伟等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54: 1031)
[22] Zhang M D, Cao W Q, Dong H, et al.Element partitioning effect on microstructure and mechanical property of the micro-laminated Fe-Mn-Al-C-dual phase steel[J]. Mater. Sci. Eng., 2016, A654: 193
[23] Hu B, Luo H W.A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity[J]. J. Alloys Compd., 2017, 725: 684
[24] Jung Y S, Lee Y K, Matlock D K, et al.Effect of grain size on strain-induced martensitic transformation start temperature in an ultrafine grained metastable austenitic steel[J]. Met. Mater. Int., 2011, 17: 553
[25] Embury D, Bouaziz O.Steel-based composites: Driving forces and classification[J]. Annu. Rev. Mater. Res., 2010, 40: 213
[26] Cai Z H, Ding H, Misra R D K, et al.Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Mater., 2015, 84: 229
[27] Li Z C, Ding H, Cai Z H, et al.Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel[J]. Mater. Sci. Eng., 2015, A639: 559
[28] Li Z C, Misra R D K,Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Mater. Sci. Eng., 2016, A673: 63
[29] Sugimoto K I, Usui N, Kobayashi M, et al.Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J]. ISIJ Int., 1992, 32: 1311
[30] Sugimoto K, Usui N, Kobayashi M, et al.Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel[J]. Metall. Mater. Trans., 1992, 23A: 3685
[31] Takaki S, Fukimaga K, Syarif J, et al.Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater. Trans., 2004, 45: 2245
[32] Matsuoka Y, Iwasaki T, Nakada N, et al.Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int., 2013, 53: 1224
[33] Avramovic-Cingara G, Saleh C A R, Jain M K, et al. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing[J]. Metall. Mater. Trans., 2009, 40A: 3117
[34] Han S K, Margolin H.Void formation, void growth and tensile fracture of plain carbon steel and a dual-phase steel[J]. Mater. Sci. Eng., 1989, A112: 133
[35] Erdogan M.The effect of new ferrite content on the tensile fracture behaviour of dual phase steels[J]. J. Mater. Sci., 2002, 37: 3623
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!