Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (2): 202-212    DOI: 10.11900/0412.1961.2018.00053
Orginal Article Current Issue | Archive | Adv Search |
Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy
Yan YANG, Guangyu YANG(), Shifeng LUO, Lei XIAO, Wanqi JIE
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy. Acta Metall Sin, 2019, 55(2): 202-212.

Download:  HTML  PDF(10964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As one of the most promising heat-resistant magnesium alloys, Mg-Gd series alloy has a wide application prospect in the industrial fields of aerospace, cars, and rail transit. There have been extensive researches on the performance improvement of Mg-Gd series alloys. As known, dendrites are the common solidification microstructures of castings of magnesium alloys, and solidification conditions have a significant effect on dendrite morphologies and growth orientation, which could strongly affect the mechanical properties of castings, thus it is critical to study the grain growth regularity for predicting the performance of magnesium castings. However, there are few studies on numerical simulation of dendrite growth process and growth orientation of magnesium alloys. Solidification behavior of magnesium alloys can be scientifically studied via directional solidification technology, and cellular automaton finite element (CAFE) method should be effective to simulate the dendrite growth process of magnesium alloys. In present work, microstructures and growth orientation of directionally solidified Mg-14.61Gd alloy under the temperature gradient G=30 K/mm and the withdrawal rate v=10~200 μm/s were investigated by EBSD measurement method and CAFE numerical simulation method. It was found that α-Mg primary phase presented unidirectional dendritic morphologies on longitudinal cross-section. The growth interface appearance of α-Mg changed from the protruding forward growth to the flat growth gradually and the dendritic arm spacing decreased gradually with the increasing v. when v increased from 10 μm/s to 100 μm/s, the main growth orientation of α-Mg changed from <1120> and <1010> to <1120>, and the deviation angle (θ) from solidification heat flow direction reduced from 11.0° to 5.7°, the reason for this lied mainly in the change of the heat flux. Further increasing v up to 200 μm/s, the main growth direction of α-Mg was still in <1120>, but the value of θ increased to 10.6°, and the anisotropy of the crystal was the dominant factor then. It was proved that the CAFE numerical simulation model could predict the grain structure and growth orientation reasonably for Mg alloy.

Key words:  Mg-14.61Gd alloy      directional solidification      EBSD      CAFE model      growth orientation     
Received:  05 February 2018     
ZTFLH:  TG113.1  
Fund: Supported by National Natural Science Foundation of China (Nos.51771152 and 51227001), National Key Research and Development Program of China (No.2018YFB1106800) and Research Fund of the State Key Laboratory of Solidification Processing (NWPU) (No.138-QP-2015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00053     OR     https://www.ams.org.cn/EN/Y2019/V55/I2/202

Fig.1  Enmeshment schematic representation of the Bridgman directional solidification device and the sample model
Interface heat transfer coefficient Temperature Process condition
Wm-2K-1
Alloy/Mold: 1000[22,23] Alloy: 740 Heat zone enclosure temperature: 740 ℃
Alloy/Pull rod: 500[22,23] Mold: 740 Heat zone enclosure emissivity: 0.9[23]
Mold/Pull rod: 500[22,23] Graphite heater: 740 Cooling zone enclosure temperature: 20 ℃
Mold/Liquid Ga-In-Sn alloy: 2000 Pull rod: 20 Cooling zone enclosure emissivity: 0[23]
Mold emissivity: 0.7[23,24]
Table 1  Boundary conditions of the Bridgman directional solidification device and the sample model
Parameter Symbol Value Unit
Slope of liquidus line m -2.513 K%-1 (mass fraction)
Melting point Tm 629
Enthalpy ΔH 883.6 kJkg-1
Thermal conductivity κ 39 Wm-1K-1
Partition coefficient k 0.101
Diffusion coefficient D 1.233×10-9 cm2s-1
Gibbs-Thomson coefficient Γ 1.1×10-7 mK
Table 2  Thermo-physical parameters of the Mg-14.61Gd alloy
Parameter Symbol Value Unit
Critical value of average nucleation supercooling degree ΔTˉ 6 K
Total supercooling degree ΔT 1 K
Maximum nucleation density nmax 5×107 m-2
Fitting polynomial coefficient a2 8.145×10-7 ms-1K-2
Fitting polynomial coefficient a3 5.871×10-7 ms-1K-3
Table 3  Calculation parameters used in nucleation model and simplified KGT model
Fig.2  Cooling curves (a) and the solidification temperature gradients (b) of Mg-14.61Gd alloy directionally solidified under temperature gradient G=30 K/mm and withdrawal rate v=100 μm/s by presetting the different heat transfer coefficients (h)
Fig.3  XRD spectra of the directionally solidified Mg-14.61Gd alloy under G=30 K/mm at different v
Fig.4  Transverse (a, c, e) and longitudinal (b, d, f) OM images of the directionally solidified Mg-14.61Gd alloy under G=30 K/mm at v=10 μm/s (a, b), v=100 μm/s (c, d) and v=200 μm/s (e, f)
Fig.5  Microstructure (a), EBSD image (b), inverse pole figure of α-Mg phase (c) and pole figures of α-Mg phase (d) of the directionally solidified Mg-14.61Gd alloy under G=30 K/mm and v=10 μm/s
Fig.6  Microstructure (a), EBSD image (b), inverse pole figure of α-Mg phase (c) and pole figures of α-Mg phase (d) of the directionally solidified Mg-14.61Gd alloy under G=30 K/mm and v=100 μm/s
Fig.7  Microstructure (a), EBSD image (b), inverse pole figure of α-Mg phase (c) and pole figures of α-Mg phase (d) of the directionally solidified Mg-14.61Gd alloy under G=30 K/mm and v=200 μm/s
v Growth orientation of θ
μms-1 α-Mg dendrite
10 [112?0], [101?0] 11.0°
100 [112?0] 5.7°
200 [112?0] 10.6°
Table 4  Growth orientations of α-Mg dendrites in the directionally solidified Mg-14.61Gd alloy under G=30 K/mm at the different v analyzed by EBSD measurement method
Fig.8  Microstructures (a~e) and <100> pole figures of α-Mg phase (f~j) of the directionally solidified Mg-14.61Gd alloy calculated by CAFE model under G=30 K/mm at v=10 μm/s (a, f), v=40 μm/s (b, g), v=100 μm/s (c, h), v=150 μm/s (d, i) and v=200 μm/s (e, j) (α—deviation angle between the dendrites growth orientation and the projection axis)
v (φ1, Φ, φ2) Growth orientation of α
μms-1 α-Mg dendrite
10 (22.6, 148.3, 145.1) [2?111?] 10.886°
(283.9, 6.3, 284.8) [01?10]
40 (91.5, 73.8, 166.7) [1?1?20] 8.016°
(115.7, 141.9, 224.5) [3?122]
100 (261.9, 78.7, 277.4) [12?10] 6.709°
(87.2, 158.3, 86.1) [12?10]
150 (275.7, 90.8, 273.8) [12?10] 8.835°
(261.8, 78.7, 277.3) [12?10]
200 (277.8, 62.2, 95.8) [12?10] 10.167°
(52.56, 8.6, 303.2) [12?10]
Table 5  Growth orientations of α-Mg dendrites in the directionally solidified Mg-14.61Gd alloy under G=30 K/mm at the different v calculated by CAFE model
Fig.9  Variation of the grain orientation deviation with v for Mg-14.61Gd alloy
Fig.10  Relationship among dendritic growth direction, preferred orientation and heat flow direction(a) v≤100 μm/s (b) v>100 μm/s
[1] Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[2] Gao L, Chen R S, Han E H.Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J]. J. Alloys Compd., 2009, 481: 379
[3] Jie Y, Wang L D, Wang L M, et al.Microstructures and mechanical properties of the Mg-4.5Zn-xGd (x=0, 2, 3 and 5) alloys[J]. J. Alloys Compd., 2008, 459: 274
[4] Zheng X W, Luo A A, Zhang C, et al.Directional solidification and microsegregation in a magnesium-aluminum-calcium alloy[J]. Metall. Mater. Trans., 2012, 43A: 3239
[5] Asta M, Beckermann C, Karma A, et al.Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Mater., 2009, 57: 941
[6] Zou M Q, Huang C Q, Xia W J, et al.Study on the crystal orientations and mechanical properties of AZ31 magnesium alloy produced by directional solidification[J]. Foundry, 2006, 55: 890(邹敏强, 黄长清, 夏伟军等. 定向凝固AZ31镁合金晶粒取向及力学性能研究[J]. 铸造, 2006, 55: 890)
[7] Pettersen K, Ryum N.Crystallography of directionally solidified magnesium alloy AZ91[J]. Metall. Trans., 1989, 20A: 847
[8] Jing T, Shuai S S, Wang M Y, et al.Research progress on 3D dendrite morphology and orientation selection during the solidification of Mg alloys: 3D experimental characterization and phase field modeling[J]. Acta Matell. Sin., 2016, 52: 1279(荆涛, 帅三三, 汪明月等. 镁合金凝固过程三维枝晶形貌和生长取向研究进展: 三维实验表征和相场模拟[J]. 金属学报, 2016, 52: 1279
[9] Wang M Y, Xu Y J, Jing T, et al.Growth orientations and morphologies of α-Mg dendrites in Mg-Zn alloys[J]. Scr. Mater., 2012, 67: 629
[10] Yang X L, Dong H B, Wang W, et al.Microscale simulation of stray grain formation in investment cast turbine blades[J]. Mater. Sci. Eng., 2004, A386: 129
[11] Ramirez A, Carrillo F, Gonzalez J L, et al.Stochastic simulation of grain growth during continuous casting[J]. Mater. Sci. Eng. 2006, A421: 208
[12] Rappaz M, Gandin C A.Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345
[13] Gandin C A, Rappaz M.A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233
[14] Kermanpur A, Mehrara M, Varahram N, et al.Improvement of grain structure and mechanical properties of a land based gas turbine blade directionally solidified with liquid metal cooling process[J]. Mater. Sci. Technol., 2008, 24: 100
[15] Takatani H, Gandin C A, Rappaz M.EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow[J]. Acta Mater., 2000, 48: 675
[16] Carozzani T, Digonnet H, Gandin C.3D CAFE modeling of grain structures: Application to primary dendritic and secondary eutectic solidification[J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 15010
[17] Wang M Y, Williams J J, Jiang L, et al.Dendritic morphology of α-Mg during the solidification of Mg-based alloys: 3D experimental characterization by X-ray synchrotron tomography and phase-field simulations[J]. Scr. Mater., 2011, 65: 855
[18] B?ttger B, Eiken J, Ohno M, et al.Controlling microstructure in magnesium alloys: A combined thermodynamic, experimental and simulation approach[J]. Adv. Eng. Mater., 2006, 8: 241
[19] Yuan X F, Ding Y T, Guo T B, et al.Numerical simulation of dendritic growth of magnesium alloys using phase-field method under forced flow[J]. Chin. J. Nonferrous Met., 2010, 20: 1474(袁训锋, 丁雨田, 郭廷彪等. 强制对流作用下镁合金枝晶生长的相场法数值模拟[J]. 中国有色金属学报, 2010, 20: 1474)
[20] Liu Z Y, Xu Q Y, Liu B C.Modeling of dendrite growth for the cast magnesium alloy[J]. Acta Matell. Sin., 2007, 43: 367(刘志勇, 许庆彦, 柳百成. 铸造镁合金的枝晶生长模拟[J]. 金属学报, 2007, 43: 367)
[21] Liu S J, Yang G Y, Jie W Q.Microstructure, microsegregation, and mechanical properties of directional solidified Mg-3.0Nd-1.5Gd Alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 1134
[22] Matache G, Stefanescu D M, Puscasu C, et al.Investigation of solidification microstructure of single crystal CMSX-4 superalloy—Experimental measurements and modelling predictions[J]. Int. J. Cast Met. Res., 2015, 28: 323
[23] ESI Software Inc.PROCAST User's Manual and Technical Reference. Version 3.1.1, 2008
[24] Elliott A J, Pollock T M.Thermal analysis of the Bridgman and liquid-metal-cooled directional solidification investment casting processes[J]. Metall. Mater. Trans., 2007, 38A: 871
[25] Pang R P, Wang F M, Zhang G Q, et al.Study of solidification thermal parameters of 430 ferrite stainless steel based on 3D-CAFE method[J]. Acta Metall. Sin., 2013, 49: 1234(庞瑞朋, 王福明, 张国庆等. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49: 1234)
[26] Wang J H, Yang G Y, Liu S J, et al.Microstructure and room temperature mechanical properties of directionally solidified Mg-2.35Gd magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1294
[27] Ma J, Wang B, Zhao S L, et al.Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys[J]. J. Alloys Compd., 2016, 668: 46
[28] Kurz W, Giovanola B, Trivedi R.Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
[29] Gandin C A, Rappaz M, Tintillier R.3-Dimensional simulation of the grain formation in investment castings[J]. Metall. Mater. Trans., 1994, 25A: 629
[30] Wang Y N, Huang J C.Texture analysis in hexagonal materials[J]. Mater. Chem. Phys., 2003, 81: 11
[31] Wang J A, Shi Y, Zhang J W.Microstructure and micro segregation of Mg-1.5Gd alloy under directional solidification station[J]. Heat Treat. Met., 2015, 40(7): 115(王甲安, 石岩, 张锦文. 定向凝固下Mg-1.5Gd合金的微观结构与微观偏析[J]. 金属热处理, 2015, 40(7): 115)
[32] Peng Q M, Ma N, Li H.Gadolinium solubility and precipitate identification in Mg-Gd binary alloy[J]. J. Rare Earth, 2012, 30: 1064
[33] Pettersen K, Lohne O, Ryum N.Dendritic solidification of magnesium alloy AZ91[J]. Metall. Trans., 1990, 21A: 221
[34] Bei H, George E P, Kenik E A, et al.Directional solidification and microstructures of near-eutectic Cr-Cr3Si alloys[J]. Acta Mater., 2003, 51: 6241
[35] Luo S F, Yang G Y, Liu S J, et al.Microstructure evolution and mechanical properties of directionally solidified Mg-xGd (x=0.8, 1.5, and 2.5) alloys[J]. Mater. Sci. Eng., 2016, A662: 241
[36] Xiao Z X, Zheng L J, Yang L L, et al.Effects of temperature gradient on lamellar orientations of directional solidified TiAl-based alloy[J]. Acta Matell. Sin., 2010, 46: 1223(肖志霞, 郑立静, 杨莉莉等. 温度梯度对定向凝固TiAl基合金片层取向的影响[J]. 金属学报, 2010, 46: 1223)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[4] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[6] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[7] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[9] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[10] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
[11] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[12] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[14] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
No Suggested Reading articles found!