Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (8): 1113-1121    DOI: 10.11900/0412.1961.2017.00506
Orginal Article Current Issue | Archive | Adv Search |
Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure
Shixin XU1,2,3(), Wei YU2, Shujia LI1, Kun WANG1, Qisong SUN1
1 Research Institute of Technology, Shougang Group Co., Ltd., Beijing 100043, China
2 Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Key Laboratory of Green Recyclable Process for Iron and Steel Production, Shougang Group Co., Ltd., Beijing 100043, China
Cite this article: 

Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure. Acta Metall Sin, 2018, 54(8): 1113-1121.

Download:  HTML  PDF(11555KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a new steel, nanobainite steel has favourable strength and good plasticity, but the bainite transformation needs a longer time, so as to severely slow production efficiency down. So, the research of acceleration methods of bainite transformation is of significance. In this work, in order to accelerate the bainite transformation rate, the 20% compression pre-deformation at 300~850 ℃ and isothermal transformation at 300 ℃ were conducted on a thermal simulator. The effects of pre-deformation temperature on nanobainite transformation kinetics and microstructure of the medium carbon nanobainite steel were investigated. The results showed that pre-deformation process obviously shortened the incubation time of bainite transformation. Low pre-deformation temperature could accelerate bainite transformation at whole isothermal region, while high pre-deformation temperature accelerated bainite transformation at the initial stage, and hindered bainite transformation at later stage. Bainite ferrite lath thickness was increased with decreasing pre-deformation temperature. The pre-deformation process increased the frequency of small angle grain boundary of bainite transformation microstructure, and the frequency of small angle grain boundary of low pre-deformation temperature was higher than that of high pre-deformation temperature. The kinetic parameters n of bainite transformation was calculated by the analytical model, the model of nucleation and growth were identified, the pre-deformation process changed the nucleation position of bainite transformation. The crystal corner nucleation was mainly obtained through low pre-deformation temperature, and the crystal edge and the crystal face nucleation were mainly obtained through high pre-deformation temperature.

Key words:  pre-deformation temperature      nanobainite      transformation kinetics      microstructure      analytical model     
Received:  30 November 2017     
ZTFLH:  TG142.1  
Fund: Supported by Key Projects in the National Science & Technology Pillar Program during the 12th Five-Year Plan Period (No.2012BAE03B01)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00506     OR     https://www.ams.org.cn/EN/Y2018/V54/I8/1113

Fig.1  Schematic of the pre-deformation and isothermal treatment
Fig.2  Curves of the kinetics of bainite transformation under different processes (fBF—volume fraction of bainite ferrite, t—time)
Fig.3  Increasing rate curves of volume fraction of bainite ferrite under different processes
Fig.4  SEM images of sample under different processes with volume fraction of bainite ferrite 5% (AGB—austenite grain boundary, GE—grain edge, SB—shear band) (a) nondeformed (b) 850 ℃ (c) 300 ℃
Fig.5  SEM images of pre-deformed sample at 300 ℃ for different isothermal time(a) 0 s (b) 100 s (c) 180 s (d) 450 s
Fig.6  SEM images of sample under different pre-deformation processes and isothermal treatment(a) 300 ℃ (b) 500 ℃ (c) 700 ℃ (d) 850 ℃ (e) nondeformed
Fig.7  EBSD images of pre-deformation and isothermal treatment sample at 300 ℃ (M—martensite)(a) secondary electron image (b) austenite phase distribution
Fig.8  TEM images of sample under different pre-deformation processes(a) 300 ℃ (b) 850 ℃ (c) nondeformed
Fig.9  Density distributions of grain misorientation of sample under different pre-deformation processes (Insets show the high magnified images)
Fig.10  Change of transformation kinetic parameter (n) with t (a) and fBF (b)
[1] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high-strength bainitic steels: Part 1[J]. Mater. Sci. Technol., 2001, 17: 512
[2] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high-strength bainitic steels: Part 2[J]. Mater. Sci. Technol., 2001, 17: 517
[3] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite[J]. Mater. Sci. Technol., 2002, 18: 279
[4] Caballero F G, Bhadeshia H K D H. Very strong bainite[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251
[5] García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 285
[6] García-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite[J]. ISIJ Int., 2003, 43: 1238
[7] García-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite[J]. ISIJ Int., 2003, 43: 1821
[8] Umemoto M, Furuhara T, Tamura I.Effects of austenitizing temperature on the kinetics of bainite reaction at constant austenite grain size in Fe-C and Fe-Ni-C alloys[J]. Acta Metall., 1986, 34: 2235
[9] Bhadeshia H K D H. Nanostructured bainite[J]. Proc. R. Soc., 2010, 466A: 3
[10] Yoozbashi M N, Yazdani S, Wang T S.Design of a new nanostructured, high-Si bainitic steel with lower cost production[J]. Mater. Des., 2011, 32: 3248
[11] Bhadeshia H K D H, David S A, Vitek J M, et al. Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel[J]. Mater. Sci. Technol., 1991, 7: 686
[12] Matsuzaki A, Bhadeshia H K D H, Harade H. Stress affected bainitic transformation in a Fe-C-Si-Mn alloy[J]. Acta Metall. Mater., 1994, 42: 1081
[13] Shipway P H, Bhadeshia H K D H. The effect of small stresses on the kinetics of the bainite transformation[J]. Mater. Sci. Eng., 1995, A201: 143
[14] Xu Z Y.Effect of stress on bainitic transformation in steel[J]. Acta. Metall. Sin., 2004, 40: 113(徐祖耀. 应力对钢中贝氏体相变的影响[J]. 金属学报, 2004, 40: 113)
[15] Gong W, Tomota Y, Koo M S, et al.Effect of ausforming on nanobainite steel[J]. Scr. Mater., 2010, 63: 819
[16] Gong W, Tomota Y, Adachi Y, et al.Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel[J]. Acta Mater., 2013, 61: 4142
[17] Ohtsuka H.Effects of strong magnetic fields on bainitic transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 279
[18] Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel[J]. Metall. Trans., 1979, 10A: 895
[19] Xu Q K.A study of the incomplete phenomenon of bainite transformation in a low carbon Fe-C-Mo alloy[J]. J. Chongqing Univ., 1987, (3): 59(徐启昆. 铁碳钼合金贝氏体转变不完全现象的研究[J]. 重庆大学学报, 1987, (3): 59)
[20] Johnson W A, Mehl R F.Reaction kinetics in process of nucleation and growth[J]. Trans. AIME, 1939, 135: 416
[21] Avrami M.Kinetics of phase change. I General theory[J]. J. Chem. Phys., 1939, 7: 1103
[22] Avrami M.Kinetics of phase change. II Transformation-time relations for random distribution of nuclei[J]. J. Chem. Phys., 1940, 8: 212
[23] Avrami M.Granulation, phase change, and microstructure kinetics of phase change. III[J]. J. Chem. Phys., 1941, 9: 177
[24] Sidel S M, Santos F A, Gordo V O, et al.Avrami exponent of crystallization in tellurite glasses[J]. J. Therm. Anal. Calorim., 2011, 106: 613
[25] Quidort D, Bréchet Y J M. The role of carbon on the kinetics of bainite transformation in steels[J]. Scr. Mater., 2002, 47: 151
[26] Liu F, Sommer F, Mittemeijer E J.An analytical model for isothermal and isochronal transformation kinetics[J]. J. Mater. Sci., 2004, 39: 1621
[27] Liu F, Sommer F, Bos C, et al.Analysis of solid state phase transformation kinetics: Models and recipes[J]. Int. Mater. Rev., 2007, 54: 193
[28] Liu F, Sommer F, Mittemeijer E J.Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters[J]. J. Mater. Sci., 2007, 42: 573
[29] Christian J W.The Theory of Transformations in Metals and Alloys[M]. 3rd Ed., Oxford: Elsevier Ltd., 2002: 546
[30] Quidort D, Brechet Y J M. A model of isothermal and non isothermal transformation kinetics of bainite in 0.5% C steels[J]. ISIJ Int., 2002, 42: 1010
[31] Zhang Z M, Cai Q W, Yu W, et al.Continuous cooling transformation behavior and kinetic models of transformations for an ultra-low carbon bainitic steel[J]. J. Iron Steel Res. Int., 2012, 19: 73
[32] Wang Q C, Yang Z G, Li Z D.A theoretical analysis on effect of deformation above Ae3 to the nucleation of proeutectoid ferrite transformation[J]. Acta. Metall. Sin., 2007, 43: 344(王启超, 杨志刚, 李昭东. Ae3温度以上变形对先共析铁素体相变形核影响的理论分析[J]. 金属学报, 2007, 43: 344)
[33] Bhadeshia H K D H, Honeycombe R W K. Steels: Microstructure and Properties[M]. 3rd Ed., Oxford: Elsevier Ltd., 2006: 129
[34] Legros M, Dehm G, Arzt E, et al.Observation of giant diffusivity along dislocation cores[J]. Science, 2008, 319: 1646
[35] Bhadeshia H K D H. Bainite in Steels [M]. 2nd Ed., Cambridge: Cambridge University Press, 2001: 124
[36] Singh S B, Bhadeshia H K D H. Estimation of bainite plate-thickness in low-alloy steels[J]. Mater. Sci. Eng., 1998, A245: 72
[37] Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bainite formation influenced by large stress[J]. Mater. Sci. Technol., 2004, 20: 1499
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!