Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (9): 1262-1272    DOI: 10.11900/0412.1961.2018.00022
Orginal Article Current Issue | Archive | Adv Search |
Effect of {332}<113> Twins Combined with Isothermal ω-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents
Xiaohua MIN1(), Li XIANG1, Mingjia LI1, Kai YAO1, Satoshi EMURA2, Congqian CHENG1, Koichi TSUCHIYA2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-004, Japan
Download:  HTML  PDF(5221KB) 
Export:  BibTeX | EndNote (RIS)      

β-type alloys have a wide application prospect in aerospace, biomedical and marine engineering and other fields, owing to their high specific strength, good corrosion resistance and low elastic modulus. Their yield strength and uniform elongation are affected by the second phase precipitation, plastic deformation mode and interstitial element, especially the oxygen element. In this work, the effect of tensile pre-deformation induced {332}<113> twins combined with isothermal ω-phase after subsequent ageing on the mechanical properties of β-type Ti-15Mo alloy with different oxygen contents from 0.1% to 0.5% (mass fraction) was examined by OM, XRD, TEM and DSC, Vickers hardness tester and tensile testing machine. The results indicated that with increasing the oxygen content, the formation of mechanical twins and isothermal ω-phase in the alloy was suppressed, and the effect of pre-deformation induced twins on the precipitation of isothermal ω-phase was negligible. After pre-deformation combined with subsequent ageing, the alloy with low oxygen content had the relatively high yield strength and large uniform elongation, but it with high oxygen content exhibited the brittle fracture. A good combination of strength with ductility in the alloy with low oxygen content was contributed to the twinning and dislocation slip coupled deformation. The high yield strength was mainly dominated by the dislocation slip, and the large uniform elongation was due to the static and dynamic grain refinement effects, which were caused by the pre-deformation induced twins and subsequent twinning deformation, respectively. Through utilizing the alloying element of oxygen effectively, and changing the plastic deformation mode and phase precipitation behavior based on the reasonable process of pre-deformation and heat treatment, the combination of strength and ductility can be controlled in a large range for the β-type titanium alloys.

Key words:  β-type titanium alloy;      oxygen content      {332}<113> twin;      isothermal ω-phase;      mechanical property     
Received:  15 January 2018     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of China (No.51471040)

Cite this article: 

Xiaohua MIN, Li XIANG, Mingjia LI, Kai YAO, Satoshi EMURA, Congqian CHENG, Koichi TSUCHIYA. Effect of {332}<113> Twins Combined with Isothermal ω-Phase on Mechanical Properties in Ti-15Mo Alloy with Different Oxygen Contents. Acta Metall Sin, 2018, 54(9): 1262-1272.

URL:     OR

Fig.1  OM images of ST (a, c, e) and STDA (b, d, f) samples of 0.1O (a, b), 0.2O (c, d) and 0.4O (e, f) alloys (ST—solution treatment, STDA—ST+deformation+ageing)
Fig.2  XRD spectra of ST, STA, STD and STDA samples of 0.1O (a), 0.2O (b) and 0.4O (c) alloys (STA—ST+ageing, STD—ST+deformation)
Fig.3  Lattice parameter of β-phase (a) and Vickers hardness (b) of ST, STA, STD and STDA samples of Ti-15Mo alloys with different oxygen contents
Fig.4  Nominal stress-strain curves of Ti-15Mo alloys with different oxygen contents
(a) ST sample (b) STA sample (c) STDA sample (Inset is nominal stress-strain curve of Ti-15Mo-0.4O alloy)
Fig.5  True stress-true strain and work hardening rate curves of ST, STA and STDA samples of 0.1O (a) and 0.2O (b) alloys
Fig.6  OM images of 5% tensile strained STDA sample of 0.1O (a) and 0.2O (b) alloys
Fig.7  Area fraction of {332}<113> twins of STDA sample before deformation and after 5% tensile strain for Ti-15Mo alloys with different oxygen contents
Fig.8  SAED patterns of ST sample for 0.1O alloy (a), intensity of diffractions spots of ST samples for Ti-15Mo alloys with different oxygen contents (b) and corresponding ratio of reciprocal distance of d(0002)ω*to d(222)β* (c) (d(0002)ω* and d(222)β* are the reciprocal vectors of diffraction spots of (0002)ω and (222)β)
Fig.9  SAED patterns (a~c) and TEM dark-field images (d~f) of STA samples for 0.1O (a, d), 0.2O (b, e) and 0.4O (c, f) alloys
Fig.10  DSC curves of ST samples for Ti-15Mo alloys with different oxygen contents at heating rates of 293 K/min (a), 313 K/min (b) and 333 K/min (c)
Fig.11  Activation energy (Q) of β-phase to ω-phase transformation for Ti-15Mo alloys with different oxygen contents
Fig.12  In situ OM images of STDA samples before deformation (a~c) and after 5% tensile strain (d~f) for 0.1O (a, d), 0.2O (b, e) and 0.4O (c, f) alloys
[1] Boyer R R, Briggs R D.The use of β titanium alloys in the aerospace industry[J]. J. Mater. Eng. Perform., 2005, 6: 681
[2] Boyer R R.Titanium for aerospace: Rationale and applications[J]. Adv. Perform. Mater., 1995, 2: 349
[3] Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[4] Kolli R P, Joost W J, Ankem S.Phase stability and stress-induced transformations in beta titanium alloys[J]. JOM, 2015, 67: 1273
[5] Banerjee D, Williams J C.Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
[6] Min X H, Emura S, Nishimura T, et al.Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys[J]. Mater. Sci. Eng., 2010, A527: 5499
[7] Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[8] Hanada S, Izumi O.Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys[J]. Metall. Mater. Trans., 1987, 18A: 265
[9] Ahmed M, Wexler D, Casillas G, et al.The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy[J]. Acta Mater., 2015, 84: 124
[10] Bowen A W.Omega phase embrittlement in aged Ti-15%Mo[J]. Scr. Metall., 1971, 5: 709
[11] Min X H, Emura S, Zhang L, et al.Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase[J]. Mater. Sci. Eng., 2015, A646: 279
[12] Takemoto Y, Shimizu I, Sakakibara A, et al.Tensile behavior and cold workability of Ti-Mo alloys[J]. Mater. Trans., 2004, 45: 1571
[13] Min X H, Emura S, Sekido N, et al.Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy[J]. Mater. Sci. Eng., 2010, A527: 2693
[14] Neelakantan S, Galindo-Nava E I, Martin D S, et al. Modelling and design of stress-induced martensite formation in metastable β Ti alloys[J]. Mater. Sci. Eng., 2014, A590: 140
[15] Hanada S, Izumi O.Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metall. Trans., 1986, 17A: 1409
[16] Marteleur M, Sun F, Gloriant T, et al.On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects[J]. Scr. Mater., 2012, 66: 749
[17] Han H N, Oh C S, Kim G, et al.Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation[J]. Mater. Sci. Eng., 2009, A499: 462
[18] Steinmetz D R, J?pel T, Wietbrock B, et al.Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments[J]. Acta Mater., 2013, 61: 494
[19] Jeong K, Jin J E, Jung Y S, et al.The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Mater., 2013, 61: 3399
[20] Mahato B, Shee S K, Sahu T, et al.An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe-Mn-Si-Al twinning-induced plasticity steel[J]. Acta Mater., 2015, 86: 69
[21] Zhang H K, Zhang Z J, Zhang Z F.Comparison of twinning evolution with work hardening ability in twinning-induced plasticity steel under different strain rates[J]. Mater. Sci. Eng., 2015, A622: 184
[22] He B B, Luo H W, Huang M X.Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects[J]. Int. J. Plast., 2016, 78: 173
[23] Min X H, Emura S, Nishimura T, et al.Effects of α phase precipitation on crevice corrosion and tensile strength in Ti-15Mo alloy[J]. Mater. Sci. Eng., 2010, A527: 1480
[24] Min X H, Tsuzaki K, Emura S, et al.Enhanced uniform elongation by pre-straining with deformation twinning in high-strength β-titanium alloys with an isothermal ω-phase[J]. Philos. Mag. Lett., 2012, 92: 726
[25] Min X H, Emura S, Meng F, et al.Mechanical twinning and dislocation slip multilayered deformation microstructures in β-type Ti-Mo base alloy[J]. Scr. Mater., 2015, 102: 79
[26] Xiang L, Min X H, Ji X, et al.Effect of pre-cold rolling-induced twins and subsequent precipitated ω-phase on mechanical properties in a β-type Ti-Mo alloy[J]. Acta. Metall. Sin.(Engl. Lett.), 2018, 31: 604
[27] Niinomo M, Nakai M, Hendrickson M, et al.Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy[J]. Scr. Mater., 2016, 123: 144
[28] Kim J, Kim H Y, Hosoda H, et al.Shape memory behavior of Ti-22Nb-(0.5-2.0)O (at%) biomedical alloys[J]. Mater. Trans., 2005, 46: 852
[29] Hanada S, Takemura A, Izumi O.The mode of plastic deformation of β Ti-V alloys[J]. Trans. Jpn. Inst. Met., 1982, 23: 507
[30] Furuta T, Kuramoto S, Rong C, et al.Effect of oxygen on phase stability and elastic deformation behavior in gum metal[J]. J. Jpn. Inst. Met., 2006, 70: 579
[31] Yin F X, Iwasaki S, Ping D H, et al.Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution[J]. Adv. Mater., 2006, 18: 1541
[32] Min X H, Emura S, Tsuchiya K, et al.Transition of multi-deformation modes in Ti-10Mo alloy with oxygen addition[J]. Mater. Sci. Eng., 2014, A590: 88
[33] Williams J C, Hickman B S, Leslie D H.The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys[J]. Metall. Trans., 1971, 2: 477
[34] Duan H P, Xu H X, Su W H, et al.Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy[J]. Int. J. Miner. Metall. Mater., 2012, 19: 1128
[35] Min X H, Bai P F, Emura S, et al.Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy[J]. Mater. Sci. Eng., 2017, A684: 534
[36] Wang K, Liang Q H, Zhou K, et al.Determination of oxygen in titanium-molybdenum alloy by inert gas fusion-infrared absorption method[J]. Metall. Anal., 2015, 35: 61
[37] Tsuji N, Ito Y, Saito Y, et al.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J]. Scr. Mater., 2002, 47: 893
[38] Takata N, Ohtake Y, Kita K, et al.Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates[J]. Scr. Mater., 2009, 60: 590
[39] Collings E W, Ho J C.Solute-induced lattice stability as it relates to superconductivity in titanium-molybdenum alloys[J]. Solid State Commun., 1976, 18: 1493
[40] Abdel-Hady M, Hinoshita K, Morinaga M.General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters[J]. Scr. Mater., 2006, 55: 477
[41] Abdel-Hady M, Fuwa H, Hinoshita K, et al.Phase stability change with Zr content in β-type Ti-Nb alloys[J]. Scr. Mater., 2007, 57: 1000
[42] Hanada S, Izumi O.Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metall. Trans., 1986, 17A: 1409
[43] Crocker A G.Twinned martensite[J]. Acta Metall., 1962, 10: 113
[44] Tobe H, Kim H Y, Inamura T, et al.Origin of {332} twinning in metastable β-Ti alloys[J]. Acta Mater., 2014, 64: 345
[45] Kawabata T, Kawasaki S, Izumi O.Mechanical properties of TiNbTa single crystals at cryogenic temperatures[J]. Acta Mater., 1998, 46: 2705
[46] Litvinov V S, Rusakov G M.Twinning on the {332}<11$\bar{3}$> system in unstable β titanium alloys[J]. Phys. Met. Metall., 2000, 90: 96
[47] Takemoto Y, Hida M, Sakakibara A.Martensitic {332}<113> twin in β type Ti-Mo alloy[J]. J. Jpn. Inst. Met., 1996, 60: 1072
[48] Lai M J, Tasan C C, Raabe D.On the mechanism of {332} twinning in metastable β titanium alloys[J]. Acta Mater., 2016, 111: 173
[49] Williams J C, De Fontaine D, Paton N E.The ω-phase as an example of an unusual shear transformation[J]. Metall. Trans., 1973, 4: 2701
[50] Liu H H, Niinomi M, Nakai M, et al.Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for spinal fixation devices[J]. Acta Biomater., 2015, 12: 352
[51] Niu J G, Ping D H, Ohno T, et al.Suppression effect of oxygen on the β to ω transformation in a β-type Ti alloy: Insights from first-principles[J]. Model. Simul. Mater. Sci. Eng., 2014, 22: 015007
[52] Kissinger H E.Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
[53] Hanada S, Ozeki M, Izumi O.Deformation characteristics in β phase Ti-Nb alloys[J]. Metall. Trans., 1985, 16A: 789
[54] Banerjee S, Naik U M.Plastic instability in an omega forming Ti-15%Mo alloy[J]. Acta Mater., 1996, 44: 3667
[55] Dini G, Ueji R, Najafizadeh A, et al.Flow stress analysis of TWIP steel via the XRD measurement of dislocation density[J]. Mater. Sci. Eng., 2010, A527: 2759
[56] Idrissi H, Renard K, Schryvers D, et al.On the relationship between the twin internal structure and the work-hardening rate of TWIP steels[J]. Scr. Mater., 2010, 63: 961
[57] Allain S, Chateau J P, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J]. Mater. Sci. Eng., 2004, A387-389: 143
[58] Rusakov G M, Litvinov A V, Litvinov V S.Deformation twinning of titanium β alloys of transition class[J]. Met. Sci. Heat Treat., 2006, 48: 244
[59] Zhou X Y, Min X H, Emura S, et al.Accommodative {332}<113> primary and secondary twinning in a slightly deformed β-type Ti-Mo titanium alloy[J]. Mater. Sci. Eng., 2017, A684: 456
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[10] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[11] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[12] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[13] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] Xingpin CHEN,Wenjia LI,Ping REN,Wenquan CAO,Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. 金属学报, 2019, 55(8): 951-957.
No Suggested Reading articles found!