Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 627-636    DOI: 10.11900/0412.1961.2017.00537
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts
Jinfu LI1,2(), Yaohe ZHOU1
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts. Acta Metall Sin, 2018, 54(5): 627-636.

Download:  HTML  PDF(972KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Solidification of deeply undercooled alloy melts proceeds with obvious temperature recalescence, during which part of primary solid is inevitably remelted, and the microstructural morphology is inevitably changed. During past decades, great improvement was achieved in modelling crystal growth in undercooled alloy melts, making it possible to quantitatively evaluate the remelting degree of primary solid at different undercoolings. In this paper, the progress in modelling the remelting of primary solid was introduced, and the variation of remelted fraction of primary solid as a function of the alloy feature and undercooling was presented. In combination with experimental results of crystal growth pattern and solidification structure in selected alloys, the mechanisms for grain refinement in undercooled single-phase alloys and anomalous eutectic formation in undercooled eutectic alloys were then discussed.

Key words:  deep undercooling      rapid solidification      solid remelting      microstructure     
Received:  14 December 2017     
ZTFLH:  TG111  
Fund: Supported by National Natural Science Foundation of China (Nos.51771116 and 51620105012)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00537     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/627

Fig.1  Schematic of the temperature distribution along a growing branch and the undercooling constitution at the tip[14] (Te—eutectic temperature, TI—temperature at the dendrite tip, ΔT—melt undercooling, ΔTs—temperature rise in the solid, ΔTc,i—solute undercooling, ΔTr,i—curvature undercooling, ΔTk,i—kinetic undercooling, ΔTt—thermal undercooling)
Fig.2  Remelted fraction of primary solid vs initial undercooling in Ni75Cu25[9]
Fig.3  Effects of liquidus slope mi (a), solute redistribution coefficient k (b) and eutectic composition Ce (c) on the remelted fraction of primary solid[14]
Fig.4  Remelted fractions of lamellar α-Ni/β-Ni3Sn eutectics dendrite (a) and α-Ni dendrite (b) when they primarily form in the rapid solidification of undercooled Ni-18.7%Sn (atomic fraction) melt[30]
Fig.5  Variation of the grain size of Ni75Cu25 with undercooling (ΔT1, ΔT2, ΔT3, ΔT4, ΔT5, ΔT *—characteristic undercoolings for grain size change)[9]
[1] Herlach D M.Non-equilibrium solidification of undercooled metallic metls[J]. Mater. Sci. Eng., 1994, R12: 177
[2] Wei B, Herlach D M, Sommer F, et al.Rapid solidification of undercooled eutectic and monotectic alloys[J]. Mater. Sci. Eng., 1993, A173: 357
[3] Battezzati L, Antonione C, Baricco M.Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams[J]. J. Alloys Compd., 1997, 247: 164
[4] Li J F, Lü Y L, Yang G C, et al.Directional solidification of undercooled melt[J]. Prog. Nat. Sci., 1997, 7: 736
[5] Yang C L, Liu F, Yang G C, et al.Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
[6] Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716
[7] Nishiyama N, Inoue A.Supercooling investigation and critical cooling rate for glass formation in Pd-Cu-Ni-P alloy[J]. Acta. Mater., 1999, 47: 1487
[8] Wei B B, Yang G C, Zhou Y H.High undercooling and rapid solidification of Ni-32.5%Sn eutectic alloy[J]. Acta Metall. Mater., 1991, 39: 1249
[9] Li J F, Liu Y C, Lu Y L, et al.Structural evolution of undercooled Ni-Cu alloys[J]. J. Cryst. Growth, 1998, 192: 462
[10] Kattamis T Z.Mechanism of establishment of cast microstructure during solidification of highly undercooled melts[J]. J. Cryst. Growth, 1976, 34: 215
[11] Li J F, Zhou Y H, Yang G C.Kinetic effect of crystal growth on the absolute stability of a planar interface in undercooled melts[J]. Mater. Res. Bull., 2000, 35: 1775
[12] Brener E, Müller-Krumbhaar H, Temkin D, et al.Morphology diagram of possible structures in diffusional growth[J]. Physica, 1998, 249A: 73
[13] Liu L, Li J F, Zhou Y H.Solidification interface morphology pattern in the undercooled Co-24.0at.%Sn eutectic melt[J]. Acta Mater., 2011, 59: 5558
[14] Wei X X, Lin X, Xu W, et al.Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts[J]. Acta Mater., 2015, 95: 44
[15] Boettinger W J, Coriell S R, Trivedi R et al. Rapid Solidification Processing: Principles and Technologies IV [M]. Baton Rouge: Claitor's Publishing Division, 1988: 13
[16] Ivantsov G P.PIv is defined by Δ=PIvexp(PIv)E1(PIv), where E1(x) is the exponential integral function[J]. Dokl. Akad. Nauk. SSSR, 1947, 58: 567
[17] Langer J S, Müller-Krumbhaar H.Theory of dendritic growth—I. Elements of a stability analysis[J]. Acta Metall., 1978, 26: 1681
[18] Langer J S, Müller-Krumbhaar H.Theory of dendritic growth—II. Instabilities in the limit of vanishing surface tension[J]. Acta Metall., 1978, 26: 1689
[19] Müller-Krumbhaar H, Langer J S.Theory of dendritic growth—III. Effects of surface tension[J]. Acta Metall., 1978, 26: 1697
[20] Trivedi R, Kurz W.Morphological stability of a planar interface under rapid solidification conditions[J]. Acta Metall., 1986, 34: 1663
[21] Li J F, Jie W Q, Yang G C, et al.Solidification structure formation in undercooled Fe-Ni alloy[J]. Acta Mater., 2002, 50: 1797
[22] Jackson K A, Hunt J D.Lamellar and rod eutectic growth[J]. Trans. Metall. Soc. AIME, 1966, 236: 1129
[23] Trivedi R, Magnin P, Kurz W.Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
[24] Kurz W, Trivedi R.Eutectic growth under rapid solidification conditions[J]. Metall. Trans., 1991, 22A: 3051
[25] Li M J, Kuribayashi K.Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts[J]. Metall. Mater. Trans., 2003, 34A: 2999
[26] Goetzinger R, Barth M, Herlach D M.Growth of lamellar eutectic dendrites in undercooled melts[J]. J. Appl. Phys., 1998, 84: 1643
[27] Li J F, Zhou Y H.Eutectic growth in bulk undercooled melts[J]. Acta Mater., 2005, 53: 2351
[28] Li M J, Nagashio K, Kuribayashi K.Reexamination of the solidification behavior of undercooled Ni-Sn eutectic melts[J]. Acta Mater., 2002, 50: 3241
[29] Yang C, Gao J, Zhang Y K, et al.New evidence for the dual origin of anomalous eutectic structures in undercooled Ni-Sn alloys: In situ observations and EBSD characterization[J]. Acta Mater., 2011, 59: 3915
[30] Li J F, Li X L, Liu L, et al.Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy[J]. J. Mater. Res., 2008, 23: 2139
[31] Li J F, Jie W Q, Zhao S, et al.Structural evidence for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt[J]. Metall. Mater. Trans., 2007, 38A: 1806
[32] Walker J L.The Physical Chemistry of Process Metallurgy[M]. New York: Interscience Publishers, 1959: 845
[33] Hunt J D, Jackson K A.Nucleation of solid in an undercooled liquid by cavitation[J]. J. Appl. Phys., 1966, 37: 254
[34] Horvay G.The tension field created by a spherical nucleus freezing into its less dense undercooled melt[J]. Int. J. Heat Mass. Transfer, 1965, 8: 195
[35] Kattamis T Z.Dendritic peculiarities in undercooled and internally chilled Fe-25 pct Ni alloy[J]. Metall. Trans., 1971, 2: 2000
[36] Powell G L F, Hogan L M. The influence of oxygen content on grain size of undercooled silver[J]. Trans. Met. Soc AIME, 1969, 245: 407
[37] Powell L F G. The undercooling of silver[J]. J. Aust. Inst. Met., 1965, 10: 3223
[38] Jones B L, Weston G M.Grain refinement in undercooled copper[J]. J. Aust. Inst. Met., 1970, 15: 3167
[39] Schwarz M, Karma A, Eckler K, et al.Physical mechanism of grain refinement in solidification of undercooled melts[J]. Phys. Rev. Lett., 1994, 73: 1380
[40] Li J F, Zhou Y H, Yang G C.Effect of solidification time on the structural evolution of undercooled single phase alloys[J]. J. Cryst. Growth, 1999, 206: 141
[41] Wilde G, G?rler G P, Willnecker R.Hypercooling of completely miscible alloys[J]. Appl. Phys. Lett., 1996, 69: 2995
[42] Lu S Y, Li J F, Li X L, et al.Grain boundaries in the refined solidification structure of undercooled Ni75Pd25[J]. Physica, 2008, 403B: 2609
[43] Lu S Y, Li J F, Zhou Y H.Recrystallization developed in the largely undercooled Ni54.6Pd45.4 alloy[J]. J. Alloys Compd., 2008, 458: 517
[44] Lu S Y, Li J F, Zhou Y H. Solidification structure of undercooled Ni54.6Pd45.4 alloy [J]. Mater. Sci. Eng., 2007, A460-461: 63
[45] Lu S Y, Li J F, Zhou Y H.Grain refinement in the solidification of undercooled Ni-Pd alloys[J]. J. Cryst. Growth, 2007, 309: 103
[46] Powell G L F, Hogen L M. Undercooling in silver-copper eutectic alloys[J]. J. Inst. Met., 1964, 93: 505
[47] Kattamis T Z, Flemings M C.Structure of undercooled Ni-Sn eutectic[J]. Metall. Mater. Trans., 1970, 1A: 1449
[48] Jones B L.Growth mechanisms in undercooled eutectics[J]. Metall. Trans., 1971, 2: 2950
[49] Liu X R, Cao C D, Wei B.Microstructure evolution and solidification kinetics of undercooled Co-Ge eutectic alloys[J]. Scr. Mater., 2002, 46: 13
[50] Liu F, Chen Y Z, Yang G C, et al.Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy[J]. J. Mater. Res., 2007, 22: 2953
[51] Wei B, Herlach D M, Sommer F, et al.Rapid solidification of undercooled eutectic and monotectic alloys[J]. Mater. Sci. Eng., 1993, A173: 355
[52] Goetzinger R, Barth M, Herlach D M.Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys[J]. Acta Mater., 1998, 46: 1647
[53] Lin X, Cao Y Q, Wang Z T, et al.Regular eutectic and anomalous eutectic growth behavior in laser remelting of Ni-30wt.%Sn alloys[J]. Acta Mater., 2017, 126: 210
[54] Clopet C R, Cochrane R F, Mullis A M.The origin of anomalous eutectic structures in undercooled Ag-Cu alloy[J]. Acta Mater., 2013, 61: 6894
[55] Clopet C R, Cochrane R F, Mullis A M.Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts[J]. Appl. Phys. Lett., 2013, 102: 031906
[56] Zhao S, Li J F, Liu L, et al.Formation mechanism of anomalous eutectics in highly undercooled Ag-39.9at.%Cu alloy[J]. Chin. Phys., 2009, 18B: 1917
[57] Zhao S, Li J F, Liu L, et al.Cellular growth of lamellar eutectics in undercooled Ag-Cu alloy[J]. Mater. Charact., 2009, 60: 519
[58] Zhao S, Li J F, Liu L, et al.Eutectic growth from cellular to dendritic form in the undercooled Ag-Cu eutectic alloy melt[J]. J. Cryst. Grwoth, 2009, 311: 1387
[59] Huang Q S, Liu L, Wei X X, et al.Solidification behaviors of undercooled Ni-P alloys[J]. Acta Phys. Sin., 2012, 61: 166401(黄起森, 刘礼, 韦修勋等. 过冷Ni-P合金的凝固行为[J]. 物理学报, 2012, 61: 166401)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!