Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 615-626    DOI: 10.11900/0412.1961.2018.00075
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing
Lin LIU(), Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU
State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing. Acta Metall Sin, 2018, 54(5): 615-626.

Download:  HTML  PDF(5357KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Industrial gas turbines (IGTs) are the key equipment to achieving energy strategy, such as energy conservation and clean power generation. When the large and complex IGT blades are fabricated by the conventional Bridgman directional solidification process, the thermal gradients at the solidification front are low and unstable, resulting in some disadvantages: the coarse dendrite structure with severe dendritic segregation, the increased occurrence of casting defects and the poor performance of mechanical properties. These disadvantages provide a good opportunity for rapid development of the directional solidification with high thermal gradient (HG), such as the liquid metal cooling (LMC). In the present work, the physical basis of HG process, the microstructure, mechanical properties, solution heat treatment, and casting defects of the superalloys processed by HG process, have been reviewed. The HG process increases the thermal gradient and the cooling rate, thus permitting microstructural improvements including a more homogeneous fine-dendrite structure with lower elemental segregation and shrinkage porosity, and refinement of carbide, γ′ phase and eutectic, reducing the volume fraction of eutectic and shrinkage porosity. During the solution heat treatment, the HG process increases the incipient melting temperature and reduces the residual segregation as well as the content of solution pore. The HG process could effectively inhibit the formation of freckle chains, increase the critical withdrawal rate of the stray grain formation, and decrease the degree of the misorientation of the <001> grain orientation from the casting axis. Moreover, the HG process could improve the mechanical properties including the stress rupture life, low-cycle fatigue (LCF), high-cycle fatigue properties and short-term strength, but the improvement might be reduced at higher temperature or under the oxidation condition.

Key words:  liquid metal cooling      directional solidification      thermal gradient      superalloy      mechanical property     
Received:  28 February 2018     
ZTFLH:  TG21  
Fund: Supported by National Natural Science Foundation of China (Nos.51331005, 51631008, 51690163 and 51771148), and National Key Research and Development Program (Nos.2016YFB0701400 and 2017YFB0702900)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00075     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/615

Technology Location PDAS / mm G / (Kcm-1) Cooling media
Shoulder Airfoil
HRS 0.60 0.55 20~40 -
LMC






Germany ENUa 0.30 0.25 50~60 Sn
DPCb 0.38 0.36 40~50 Sn
USA
MUc 0.39 0.28 60~80 Sn
GEd 0.26 0.22 - Sn
GEd - 0.20 40~65 Al
Russia VIAMe - - ~120 Al
China IMRf 0.35 0.30 80~100 Sn
NWPUg 0.26 0.22 170~250 Ga-In-Sn
Table 1  Comparison of parameters of HRS and LMC furnaces
Fig.1  Dendrite morphologies under various G and withdrawal rates (V)[19,35]
(a) G=200 K/cm, V=6.67 μm/s (b) G=200 K/cm, V=13.3 μm/s
(c) G=200 K/cm, V=100 μm/s (d) G=800 K/cm, V=6.67 μm/s
G / (Kcm-1) Al Cr Mo W Ta Re
60 0.7 1.2 1.2 2.1 0.5 3.4
200 0.8 1 0.9 1.5 0.6 2.5
Table 2  Dependence of the segregation coefficients of elements of cast alloy ZhS-47 (9%Re, mass fraction) with single-crystal structure on the thermal gradient at the crystallization front[7]
Fig.2  Comparison of the morphologies of script carbides with HRS (a) and LMC (b)[37]
Fig.3  The effect of G on the volume fraction of pores (Q)[40]
Fig.4  The effect of G on the size of γ′ phase (d)[40]
Fig.5  Residual segregation ratios after heat treatment of the sample fabricated by different solidification techniques (HRS and LMC) (sht—solution heat treatment)
Fig.6  Effect of processing conditions (G and V) and casting size on freckle formation[8]
Fig.7  Schematics of turbine blade (a), the experimental and simulated results of HRS casting (b, c) and LMC casting (d, e), and the effect of withdrawal rate on the stray grain (SG) formation in HRS casting (f~h) and LMC casting (i~l) (PG—primary grain, GB—grain boundary)[53]
Fig.8  Sterographic orientation maps showing Laue results for mechanical test bars (a) and turbine blade cast (b) using HRS (baseline) and LMC (high gradient) processes[10]
Defect Conventional (HRS) High-gradient (LMC) Location
Freckle chain 4 1 Root
High angle boundary 3 2 Leading-edge platform, trailing edge, root
Recrystallized grain 1 4 Concave platform edge, leading edge
Zebra grain 0 1 Leading-edge platform
Table 3  Number of grain defects observed on the Titan 130 1st blade cast using conventional and high-gradient processes[10]
Fig.9  Comparison of creep curves for Mar-M246 directionally solidified in low thermal gradient (LG, 40 ℃/cm) and high thermal gradient (HG, 130 ℃/cm) under 850 ℃ and 250 MPa[59,60]
Technology G
Kcm-1
V
mmmin-1
Rupture life
h
Elongation
%
HRS 50 5 69.93 25.0
LMC 218 3 100.90 20.9
LMC 218 7 96.22 29.7
LMC 218 10 91.15 31.2
Table 4  Rupture life of DZ125 superalloys at 980 ℃ and 235 MPa[61]
Test condition Rupture life / h
Temperature / ℃ Stress / MPa HG LG
760 750 1138 759
850 500 359 -
900 380 230 212
950 240 386 341
1000 200 177 162
1050 120 1055 -
1050 140 288 255
Table 5  Creep property of HG (250 ℃/cm) and LG (40 ℃/cm) processed CMSX-2 single crystals[62]
Technology Dendrite arm spacing
μm
Rupture life / h Elongation / %
As cast After heat treatment As cast After heat treatment
HRS 350 39.4 84.0 25.2 22.0
HRS 245 52.6 67.0 31.3 39.0
LMC 123 58.6 64.0 34.7 32.5
LMC 79 64.8 108.8 38.1 24.0
LMC 38 76.4 131.5 34.1 35.1
Table 6  The rupture life of CMSX-2 alloy under 1050 ℃ and 160 MPa[19,35]
Fig.10  Creep rupture properties for all conducted isothermal creep experiments (750~1200 ℃) of an experimental alloy processed by HRS and LMC techniques (For the graph's horizontal axis, P is the Larson-Miller parameter, T[K]is the temperature of the creep experiments, and tF[h] is the creep time to failure in hours)[32]
Fig.11  Low-cycle fatigue properties of LMC and RC DS GTD-444 at 871 ℃ (RC—radiation cooling, DS—directional solidification, Nf—cycles to failure, R—stress level)[26]
Fig.12  S-N curves for AM1sample tested in air and in vacuum at 950 ℃. The LMC data points represent bars solidified with a 8.5 mm/min withdrawal rate, whereas, HRS solidified material was cast at 3.4 mm/min[32]
Fig.13  Effect of processing conditions on high-cycle fatigue behavior of CMSX-2 single crystals at 870 ℃ and 50 Hz[62]
Fig.14  Fatigue properties of the solidified material by HRS (600 μm) and LMC (400 and 250 μm) techniques[31]
G / (Kcm-1) Short-term strength at 20 ℃ / MPa Rupture life under 1100 ℃ and 120 MPa / h
20 87 57
100 107 118
200 120 139
Table 7  Mechanical properties (average values) of alloy VZhM-3 as a function of G[40]
[1] Konter M, Thumann M.Materials and manufacturing of advanced industrial gas turbine components[J]. J. Mater. Proc. Technol., 2001, 117: 386
[2] Chang J X, Wang D, Zhang G, et al.Effect of Re and Ta on hot corrosion resistance of Nickel-base single crystal superalloys [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys[C]. Warrendale, PA: TMS, 2016: 177
[3] Link T, Zabler S, Epishin A, et al.Synchrotron tomography of porosity in single-crystal nickel-base superalloys[J]. Mater. Sci. Eng., 2006, A425: 47
[4] Sato A, Harada H, Yokokawa T, et al.The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scr. Mater., 2006, 54: 1679
[5] Liu L.The progress of investment casting of nickel-based superalloys[J]. Foundry, 2012, 61: 1273(刘林. 高温合金精密铸造技术研究进展[J]. 铸造, 2012, 61: 1273)
[6] Carter P, Cox D C, Gandin C A, et al.Process modelling of grain selection during the solidification of single crystal superalloy castings[J]. Mater. Sci. Eng., 2000, A280: 233
[7] Bondarenko Y A, Kablov E N, Surova V A, et al.Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy[J]. Met. Sci. Heat Treat., 2006, 48: 360
[8] Gigliotti M F X, Huang S C, Klug F J, et al. GE casting project [R]. Niskayuna: General Electric Corporate, 2004
[9] Kermanpur A, Mehrara M, Varahram N, et al.Improvement of grain structure and mechanical properties of a land based gas turbine blade directionally solidified with liquid metal cooling process[J]. Mater. Sci. Technol., 2008, 24: 100
[10] Clemens M L, Price A, Bellows R S.Advanced solidification processing of an industrial gas turbine engine component[J]. JOM, 2003, 55(3): 27
[11] Ma D X.Development of single crystal solidification technology for production of superalloy turbine blades[J]. Acta Metall. Sin., 2015, 51: 1179(马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51: 1179)
[12] Hofmeister M, Franke M M, Koerner C, et al.Single crystal casting with fluidized carbon bed cooling: A process innovation for quality improvement and cost reduction[J]. Metall. Mater. Trans., 2017, 48B: 3132
[13] Giamei A F, Tschinkel J G.Liquid metal cooling: A new solidification technique[J]. Metall. Trans., 1976, 7A: 1427
[14] Fitzgerald T J, Singer R F.An analytical model for optimal directional solidification using liquid metal cooling[J]. Metall. Mater. Trans., 1997, 28A: 1377
[15] Elliott A J, Pollock T M, Tin S, et al.Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment[J]. Metall. Mater. Trans., 2004, 35A: 3221
[16] Wang F, Ma D X, Bogner S, et al.Comparative investigation of the downward and upward directionally solidified single-crystal blades of superalloy CMSX-4[J]. Metall. Mater. Trans., 2016, 47A: 2376
[17] Wang F, Ma D X, Zhang J, et al.Effect of local cooling rates on the microstructures of single crystal CMSX-6 superalloy: A comparative assessment of the Bridgman and the downward directional solidification processes[J]. J. Alloys Compd., 2014, 616: 102
[18] Wang F, Ma D X, Zhang J, et al.Microstructural evolution of aluminium-copper alloys during the downward directional solidification process[J]. Int. J. Mater. Res., 2014, 105: 168
[19] Liu L, Huang T W, Qu M, et al.High thermal gradient directional solidification and its application in the processing of nickel-based superalloys[J]. J. Mater. Proc. Technol., 2010, 210: 159
[20] Lohmuller A, Eber W, Grobmann J, et al.Improved quality and economics of investment castings by liquid metal cooling: The selection of cooling media [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 181
[21] Huang T W, Liu L, Zhang W G, et al.A compound induction heating device in the directional solidification apparatus with the high thermal gradient [P]. Chin Pat, 200710017592.8, 2007(黄太文, 刘林, 张卫国等. 一种高温度梯度定向凝固的复合感应加热装置[P]. 中国专利, 200710017592.8, 2007)
[22] Zhang W G, Huang T W, Liu L, et al.A conical graphite induction heater in the directional solidification apparatus with the high thermal gradient [P]. Chin Pat, 200810017988.7, 2008(张卫国, 黄太文, 刘林等. 高温度梯度定向凝固锥形石墨感应加热器 [P]. 中国专利, 200810017988.7, 2008)
[23] Zhang J, Liu L, Fu H Z, et al.A zone intensified overheating by resistance heater in the directional solidification apparatus [P]. Chin Pat, 201010142263.8, 2010(张军, 刘林, 傅恒志等. 一种局部强化电阻加热高梯度定向凝固装置 [P]. 中国专利, 201010142263.8, 2010)
[24] Liu L, Ge B M, Zhang J, et al. A composite insulation baffle utilized in the directional solidification apparatus [P]. Chin Pat, 201110087122.5, 2011(刘林, 葛丙明, 张军等.一种定向凝固用复合隔热挡板 [P]. 中国专利, 201110087122.5, 2011)
[25] Hunt J D.Cellular and primary dendrite spacings [A]. International Conference on Solidification and Casting of Metals[C]. London: The Metal Society, 1979: 3
[26] Balsone S, Feng G F, Peterson L, et al.Microstructure and mechanical behavior of liquid metal cooled directionally solidified GTD-444 [A]. Solidification Processes and Microstructures—A Symposium in Honor of Wilfried Kurz[C]. Charlotte: TMS, 2004: 77
[27] Brundidge C L, Van Drasek D, Wang B, et al.Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys[J]. Metall. Mater. Trans., 2012, 43A: 965
[28] Brundidge C L, Miller J D, Pollock T M.Development of dendritic structure in the liquid-metal-cooled, directional-solidification process[J]. Metall. Mater. Trans., 2011, 42A: 2723
[29] Elliott A J, Karney G B, Gigliotti M F X, et al. Issues in processing by the liquid-Sn assisted directional solidification technique [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 421
[30] Franke M M, Hilbinger R M, Lohmüller A, et al.The effect of liquid metal cooling on thermal gradients in directional solidification of superalloys: Thermal analysis[J]. J. Mater. Process. Technol., 2013, 213: 2081
[31] Lamm M, Singer R F.The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483[J]. Metall. Mater. Trans., 2007, 38A: 1177
[32] Steuer S, Villechaise P, Pollock T M, et al.Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy[J]. Mater. Sci. Eng., 2015, A645: 109
[33] Bondarenko Y A, Kablov E N.Directional crystallization of high-temperature alloys with elevated temperature gradient[J]. Met. Sci. Heat Treat., 2002, 44: 288
[34] Bondarenko Y A, Kablov E N, Morozova G I.Effect of high-gradient directed crystallization on the structure and phase composition of a high-temperature alloy of the type RENE-N5[J]. Met. Sci. Heat Treat., 1999, 41: 61
[35] Liu L, Huang T W, Zhang J, et al.Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification[J]. Mater. Lett., 2007, 61: 227
[36] Liu C, Li K W, Shen J, et al.Improved castability of directionally solidified, Ni-based superalloy by the liquid metal cooling process[J]. Metall. Mater. Trans., 2012, 43A: 405
[37] Fan Z D, Wang D, Liu C, et al.Low-cycle fatigue properties of nickel-based superalloys processed by high-gradient directional solidification[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 878
[38] Kuleshova E A, Cherkasova E R, Logunov A V.Dendritic segregation in heat-resistant nickel alloys[J]. Met. Sci. Heat Treat., 1981, 23: 392
[39] Zhao K, Ma Y H, Lou L H.Improvement of creep rupture strength of a liquid metal cooling directionally solidified nickel-base superalloy by carbides[J]. J. Alloys Compd., 2009, 475: 648
[40] Bondarenko Y A, Echin A B, Surova V A, et al.Special features of the structure of single-crystal refractory nickel alloy under directed crystallization[J]. Met. Sci. Heat Treat., 2017, 59: 39
[41] Zhang W G, Liu L, Huang T W, et al.Effect of cooling rate on γ' precipitate of DZ4125 alloy under high thermal gradient directional solidification[J]. Acta Metall. Sin., 2009, 45: 592(张卫国, 刘林, 黄太文等. 高温度梯度定向凝固冷却速率对DZ4125合金γ'相的影响[J]. 金属学报, 2009, 45: 592)
[42] Liu G, Liu L, Zhao X B, et al.Microstructure and microsegregation in a Ni-based single crystal superalloy directionally solidified under high thermal gradient[J]. Acta Metall. Sin., 2010, 46: 77(刘刚, 刘林, 赵新宝等. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报, 2010, 46: 77)
[43] Zhao X B, Liu L, Yu Z, Zhang W H, et al.Influence of directional solidification variables on the microstructure and crystal orientation of AM3 under high thermal gradient[J]. J. Mater. Sci., 2010, 45: 6101
[44] Kurz W, Fisher D J.Fundamental of Solidification[M]. 4th Ed., Switzerland: Trans Tech Publications Ltd, 1998: 19
[45] Miller J D, Pollock T M.Stability of dendrite growth during directional solidification in the presence of a non-axial thermal field[J]. Acta Mater., 2014, 78: 23
[46] Pollock T M, Murphy W H.The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metall. Mater. Trans., 1996, 27A: 1081
[47] Schneider M C, Gu J P, Beckermann C, et al.Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification[J], Metall. Mater. Trans., 1997, 28A: 1517
[48] Meng X B, Li J G, Chen Z Q, et al.Effect of Platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1955
[49] Ma D X, Bührig-Polaczek A.Application of a heat conductor technique in the production of single-crystal turbine blades[J]. Metall. Mater. Trans., 2009, 40B: 738
[50] Siredey N, Boufoussi M, Denis S, et al.Dendritic growth and crystalline quality of nickel-base single grains[J]. J. Cryst. Growth, 1993, 130: 132
[51] Bogdanowicz W, Albrecht R, Sieniawski J, et al.The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. J. Cryst. Growth, 2014, 401: 418
[52] Stanford N, Djakovic A, Shollock B A, et al.Seeding of single crystal superalloys-role of seed melt-back on casting defects[J]. Scr. Mater., 2004, 50: 159
[53] Li Y F, Liu L, Huang T W, et al.Simulation of stray grain formation in Ni-base single crystal turbine blades fabricated by HRS and LMC techniques[J]. China Foundry, 2017, 14(2): 75
[54] D'Souza N, Ardakani M G, mclean M, et al. Directional and single-crystal solidification of Ni-base superalloys: Part I. The role of curved isotherms on grain selection[J]. Metall. Mater. Trans., 2000, 31A: 2877
[55] Kermanpur A, Rappaz M, Varahram N, et al.Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process[J]. Metall. Mater. Trans., 2000, 31B: 1293
[56] Price A R, Clemens M L.Improved casting process for large single crystal gas turbine components [A]. Advanced Materials and Processes for Gas Turbines[C]. Warrendale, PA: TMS, 2003: 119
[57] Liu C B, Shen J, Zhang J, et al.Effect of withdrawal rates on microstructure and creep strength of a single crystal superalloy processed by LMC[J]. J. Mater. Sci. Technol., 2010, 26: 306
[58] Zhang J, Lou L H.Directional solidification assisted by liquid metal cooling[J]. J. Mater. Sci. Technol., 2007, 23: 289
[59] McLean M. Investment casting-developments in microstructural control and mechanical performance[J]. Mater. Sci. Technol., 1988, 4: 205
[60] Quested P N, mclean M. Solidification morphologies in directionally solidified Superalloys[J]. Mater. Sci. Eng., 1984, A65: 171
[61] Zhang H, Pei Y, Li S, et al.Effect of process parameters on microstructures and properties of DZ125 superalloy solidified by LMC[J]. Mater. Res. Innov., 2014, 18(suppl.4): S4-385
[62] Khan T, Caron P.Effect of processing conditions and heat treatments on mechanical properties of single-crystal superalloy CMSX-2[J]. Mater. Sci. Technol., 1986, 2: 486
[63] Brundidge C L, Pollock T M.Processing to fatigue properties: Benefits of high gradient casting for single crystal airfoils [A]. Superalloys 2012: 12th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2012: 379
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[8] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[11] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
No Suggested Reading articles found!