Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (3): 463-469    DOI: 10.11900/0412.1961.2017.00121
Orginal Article Current Issue | Archive | Adv Search |
Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings
Teng GUO1, Hongtao LI2, Bailing JIANG1,2(), Yibin XING2, Xinyu ZHANG2
1 School of Materials Science and Engineering, Xi′an University of Technology, Xi'an 710048, China;
2 School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Cite this article: 

Teng GUO, Hongtao LI, Bailing JIANG, Yibin XING, Xinyu ZHANG. Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings. Acta Metall Sin, 2018, 54(3): 463-469.

Download:  HTML  PDF(4666KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the process of depositing coatings on the surface of metal substrates via ion plating, substrate temperature increases due to the bombardment of deposited particles and the heat radiation of discharge target, forming "heat affected zone" where substrate temperature gradually reduces from the surface. In this work, quenched 40CrNiMoA was prepared as substrate to discuss about the influence of target power density on the temperature rising range, region scale of "heat affected zone" and microstructure of Ti coating. The results show that the traditional metal heat treatment method can accurately characterize temperature rising range and region scale of "heat affected zone". And, with target power density increases from 20.61 W/cm2 to 143.01 W/cm2, substrate temperature ranges from 310 ℃ to 525 ℃, the region scale of "heat affected zone" reaches to 2.51 mm. Also, the preferential orientation of Ti coating changes from (002) to (110), the average grain size significantly increases from 9.9 nm to 19.5 nm, the surface roughness declines first and then increases slightly. In addition, the internal stress releases gradually for elimination of lattice defects when substrate temperature is above 300 ℃.

Key words:  ion plating      heat affected zone      Ti coating      microstructure      internal stress     
Received:  07 April 2017     
Fund: Supported by National Natural Science Foundation of China (No.51401106)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00121     OR     https://www.ams.org.cn/EN/Y2018/V54/I3/463

Fig.1  Variation of micro-hardness of quenched 40CrNiMoA with tempering temperature
Fig.2  Microhardness distributions along the depth direction of the interface between coating and substrate under different target power densities
Fig.3  Substrate organizations adjacent to the coatings under different target power densities
Fig.4  Temperature distributions along the depth direction of the interface between coating and substrate under different target power densities
PA / (Wcm-2) Microhardness / MPa T / ℃ σ / GPa
20.61 512 310 -2.2
67.07 468 380 -1.0
97.50 422 445 -0.6
129.78 404 465 -0.5
130.01 385 500 -0.6
143.01 355 525 -0.9
Table 1  The substrate temperatures adjacent to the coatings and internal stresses of coatings under different target power densities
PA / (Wcm-2) TC(100) TC(002) TC(101) TC(102) TC(110) TC(103) TC(112) D / nm
20.61 0.095 0.483 0.055 0.194 - 0.172 - 9.9
67.07 0.134 0.071 0.106 0.086 0.366 0.086 0.152 14.8
97.50 0.090 0.077 0.098 0.096 0.418 0.081 0.139 15.7
129.78 0.108 0.088 0.102 0.085 0.403 0.076 0.139 16.3
130.01 0.147 0.099 0.098 0.089 0.342 0.105 0.120 16.5
143.01 0.217 0.085 0.137 0.162 0.164 - 0.234 19.5
Table 2  The texture coefficients and average grain sizes of Ti coatings under different target power densities
Fig.5  XRD patterns of Ti coatings under different target power densities
Fig.6  Surface morphologies of Ti coatings under different target power densities
[1] Louring S, Madsen N D, Sillassen M, et al.Microstructural, mechanical and tribological analysis of nanocomposite Ti-C-N coatings deposited by industrial-scale DC magnetron sputtering[J]. Surf. Coat. Technol., 2014, 245: 40
[2] Yeh T S, Wu J M, Hu L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J]. Thin Solid Films, 2008, 516: 7294
[3] Zuo J, Xie Y N, Zhang J, et al.TiN coated stainless steel bracket: Tribological, corrosion resistance, biocompatibility and mechanical performance[J]. Surf. Coat. Technol., 2015, 277: 227
[4] Tian M B.Thin Film Technologies and Materials [M]. Beijing: Tsinghua University Press, 2006: 493(田民波. 薄膜技术与薄膜材料 [M]. 北京: 清华大学出版社, 2006: 493)
[5] Gong C.Study of droplets and its effect on performance of TiN films prepared by arc ion plating [D]. Changsha: Central South University, 2013(龚才. 电弧离子镀TiN薄膜表面液滴及其对薄膜性能的影响研究 [D]. 长沙: 中南大学, 2013)
[6] Zhang Y J, Wu Z G, Zhang W W, et al.Comparative study on the tribological properties of TiN films prepared by multi arc ion plating and filtered cathodic arc plasma deposition[J]. Tribology, 2004, 24: 498(张玉娟, 吴志国, 张伟伟等. 多弧镀及磁过滤阴极弧沉积TiN薄膜的摩擦学性能对比 [J]. 摩擦学学报, 2004, 24: 498)
[7] Xiao J Q, Lang W C, Zhao Y H, et al.Influence of axisymmetric magnetic field on microstructure and friction performance of TiN film deposited by arc ion plating[J]. Acta Metall. Sin., 2011, 47: 566(肖金泉, 郎文昌, 赵彦辉等. 轴对称磁场对电弧离子镀TiN薄膜结构及摩擦性能的影响 [J]. 金属学报, 2011, 47: 566)
[8] Anton J M, Mishra B, Moore J J, et al.Investigation of processing parameters for pulsed closed-field unbalanced magnetron co-sputtered TiC-C thin films[J]. Surf. Coat. Technol., 2006, 201: 4131
[9] Lin J, Moore J J, Mishra B, et al.Syntheses and characterization of TiC/a∶C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)[J]. Thin Solid Films, 2008, 517: 1131
[10] Bai X.Calculation of deposition temperature of substrate via pulsed-bias arc ion plating and preliminary study on nano- multilayer hard films [D]. Dalian: Dalian University of Technology, 2004(白晓. 脉冲偏压电弧离子镀基体沉积温度的计算与纳米多层硬质薄膜的初步研究[D]. 大连: 大连理工大学, 2004)
[11] Dai H Y, Jiang H, Zhan C Y, et al.Effects of sputtering current on the bonding structure and mechanical properties of diamond-like carbon films deposited by MFPUMST[J]. Surf. Interface Anal., 2009, 41: 560
[12] Chowdhury S, Laugier M T, Rahman I Z. Effects of substrate temperature on bonding structure and mechanical properties of amorphous carbon films [J]. Thin Solid Films, 2004, 448-448: 174
[13] Kim D, Han Y, Cho J S, et al. Low temperature deposition of ITO thin films by ion beam sputtering [J]. Thin Solid Films, 2000, 377-378: 81
[14] Magnus F, Ingason A S, Sveinsson O B, et al.Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering[J]. Thin Solid Films, 2011, 520: 1621
[15] Patsalas P, Charitidis C, Logothetidis S.The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films[J]. Surf. Coat. Technol., 2000, 125: 335
[16] Subramanian B, Ashok K, Jayachandran M.Effect of substrate temperature on the structural properties of magnetron sputtered titanium nitride thin films with brush plated nickel interlayer on mild steel[J]. Appl. Surf. Sci., 2008, 255: 2133
[17] Zhang L, Shi L Q, He Z J, et al.Deposition of dense and smooth Ti films using ECR plasma-assisted magnetron sputtering[J]. Surf. Coat. Technol., 2009, 203: 3356
[18] Zhao S S, Yang Y, Li J B, et al.Effect of deposition processes on residual stress profiles along the thickness in (Ti, Al)N films[J]. Surf. Coat. Technol., 2008, 202: 5185
[19] Zhang L, He Z B, Liao G, et al.Influence of B doping on structure and properties of Ti thin film[J]. Acta Phys. Sin., 2012, 61: 186803(张玲, 何智兵, 廖国等. B掺杂对Ti薄膜结构与性能的影响 [J]. 物理学报, 2012, 61: 186803)
[20] Dong M L, Cui X F, Wang H D, et al.Effect of different substrate temperatures on microstructure and residual stress of Ti films[J]. Rare Met. Mater. Eng., 2016, 45: 843
[21] Cheng B X.A study of the structure and properties of Al and Cu films fabricated by magnetron sputtering [D]. Chengdu: Sichuan University, 2007(程丙勋. 磁控溅射制备Al膜和Cu膜的结构与性能研究 [D]. 成都: 四川大学, 2007)
[22] Duan L L.Studies on the structure and properties of Ti films fabricated by magnetron sputtering [D]. Lanzhou: Lanzhou University, 2008(段玲珑. 磁控溅射制备Ti膜的结构与性能研究[D]. 兰州: 兰州大学, 2008)
[23] Chawla V, Jayaganthan R, Chawla A K, et al.Morphological study of magnetron sputtered Ti thin films on silicon substrate[J]. Mater. Chem. Phys., 2008, 111: 414
[24] Brama Y L, Sun Y, Dangeti S R K, et al. Response of sputtered titanium films on silicon to thermal oxidation[J]. Surf. Coat. Technol., 2005, 195: 189
[25] Yang C, Jiang B L, Liu Z, et al.Nanocrystalline titanium films deposited via thermal-emission-enhanced magnetron sputtering[J]. Thin Solid Films, 2015, 597: 117
[26] Yang C, Jiang B L, Feng L, et al.Effect of discharge characteristics of target on ionization and deposition of deposited particles[J]. Acta Metall. Sin.,2015, 51: 1523(杨超, 蒋百灵, 冯林等. 靶面放电特性对沉积粒子离化率及沉积行为的影响 [J]. 金属学报, 2015, 51: 1523)
[27] Nakamura T, Okimura K.Ti ion density in inductively coupled plasma enhanced dc magnetron sputtering[J]. Vacuum, 2004, 74: 391
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!