Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (3): 457-462    DOI: 10.11900/0412.1961.2017.00211
Orginal Article Current Issue | Archive | Adv Search |
Magnetic Viscosity of Anisotropic Rare Earth Permanent Films
Yachao SUN, Minggang ZHU(), Rui HAN, Xiaoning SHI, Nengjun YU, Liwei SONG, Wei LI
Division of Functional Material, Central Iron & Steel Research Institute, Beijing 100081, China;
Cite this article: 

Yachao SUN, Minggang ZHU, Rui HAN, Xiaoning SHI, Nengjun YU, Liwei SONG, Wei LI. Magnetic Viscosity of Anisotropic Rare Earth Permanent Films. Acta Metall Sin, 2018, 54(3): 457-462.

Download:  HTML  PDF(1056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rare earth permanent thin films are useful for magnetic microdevices such as micromotors, since its excellent magnetic properties are able to raise the performance of the devices. In order to judge the reliability of permanent magnet materials, it is quite theoretical and practical to study the time dependence behavior of magnetization, that is, magnetic viscosity or magnetic after-effect. In this work, NdFeB, CeFeB and NdFeB/CeFeB films were fabricated on the Si substrates by direct current (DC) magnetron sputtering. A Ta underlayer of 50 nm and a coverlayer of 40 nm were sputtered at room temperature to align the easy axis of the RE2Fe14B grains perpendicular to the film plane and to prevent oxidation of the magnetic films, respectively. NdFeB and CeFeB magnetic films were deposited at 903 and 883 K, respectively, and submitted to an in-situ rapid thermal annealing at 948 K for 30 min. The microstructure and magnetic properties of the films were characterized by XRD and physical property measurement system (PPMS). The results indicate that the films show excellent perpendicular anisotropy. A coercivity Hc of 1377.4 kA/m is obtained for NdFeB monolayer film at room temperature. The magnetic viscosity coefficient (S) of the films was studied over a range of temperatures (5~300 K). It is found that the values of S for all films are less than 1, and are quite similar at low temperature (5 K). Both weakened thermal agitation and strengthened anisotropy energy barriers are supposed to decrease transition frequency (f) and prolong relaxation time (τ) at low temperature, which lead to S decreasing. The magnetic viscosity of NdFeB/CeFeB thin film is as similar as that of the CeFeB monolayer thin film, and both are much smaller than that of the NdFeB film. It is shown that the dual-hard magnetic layer structure can effectively reduce the viscosity coefficient and improve the time stability of the NdFeB/CeFeB thin film. Furthermore, the temperature dependence of the initial decay rates (dM/dt) from 0 s to 10 s was discussed. The initial magnetic decay of the film demonstrates a similar temperature behavior as the magnetic viscosity coefficient S.

Key words:  permanent thin film      magnetic property      magnetic viscosity     
Received:  02 June 2017     
Fund: Supported by National Basic Research Program of China (No.2014CB643701) and National Natural Science Foundation of China (No.51571064)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00211     OR     https://www.ams.org.cn/EN/Y2018/V54/I3/457

Fig.1  Hysteresis loops with the magnetic field applied perpendicular () and parallel (//) to the plane of the thin films at room temperature (H—coercivity, J—magnetic polarization)
Fig.2  XRD spectra of the NdFeB, CeFeB and NdFeB/CeFeB thin films
Fig.3  Temperature dependence of coercivites Hc for the NdFeB, CeFeB and NdFeB/CeFeB thin films (Inset shows the locally enlarged curve)
Fig.4  Time t (a) and ln(t+t0) (b) dependence of magnetization M/M0 for the NdFeB/CeFeB thin film at applied magnetic fields (H0=Hc, t0—time constant)
Fig.5  Temperature dependence of the magnetization viscosity coefficient S for the magnetic thin films
Fig.6  Temperature dependence of the initial magnetic decay rates dM/dt from 0 s to 10 s for the magnetic thin films
Fig.7  Applied magnetic field dependence of S at room temperature for the magnetic thin films
[1] Rodewald W, Wall B, Katter M, et al.Top Nd-Fe-B magnets with greater than 56 MGOe energy density and 9.8 kOe coercivity[J]. IEEE Trans. Magn., 2002, 38: 2955
[2] Sagawa M, Fujimura S, Togawa N, et al.New material for permanent magnets on a base of Nd and Fe (invited)[J]. J. Appl. Phys., 1984, 55: 2083
[3] Gutfleisch O G, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821
[4] Davies B E, Mottram R S, Harris I R.Recent developments in the sintering of NdFeB[J]. Mater. Chem. Phys., 2001, 67: 272
[5] Huang S L, Feng H B, Zhu M G, et al.Optimal design of sintered Ce9Nd21FebalB1 magnets with a low-melting-point (Ce, Nd)-rich phase[J]. Int. J. Miner. Metall. Mater., 2015, 22: 417
[6] Feng W C, Gao R W, Li W.Effects of grain-size distribution on effective anisotropy and coercivity for nanocrystalline hard magnetic material[J]. Acta Metall. Sin., 2005, 41: 347(冯维存, 高汝伟, 李卫. 晶粒尺寸分布对纳米硬磁材料有效各向异性和矫顽力的影响 [J]. 金属学报, 2005, 41: 347)
[7] Preisach F.über die magnetische Nachwirkung[J]. Z. Phys., 1935, 94: 277
[8] Street R, Woolley J C.A study of magnetic viscosity[J]. Proc. Phys. Soc., 1949, 62A: 562
[9] Jin H M.Magnetic Physics [M]. Beijing: Science Press, 2013: 277(金汉民. 磁性物理 [M]. 北京: 科学出版社, 2013: 277)
[10] Zhu M G, Li W, Wang J D, et al.Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method[J]. IEEE Trans. Magn., 2014, 50: 1000104
[11] Herbst J F, Meyer M S, Pinkerton F E. Magnetic hardening of Ce2Fe14B [J]. J. Appl. Phys., 2012, 111: 07A718
[12] Alam A, khan M, McCallum R W, et al. Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B magnets[J]. Appl. Phys. Lett. 2013, 102: 042402
[13] Skoug E J, Meyer M S, Pinkerton F E, et al.Crystal structure and magnetic properties of Ce2Fe14-xCoxB alloys[J]. J. Alloys Compd., 2013, 574: 552
[14] Li Z B, Shen B G, Zhang M, et al.Substitution of Ce for Nd in preparing R2Fe14B nanocrystalline magnets[J]. J. Alloys Compd., 2015, 628: 325
[15] Villas-Boas V, González J M, Cebollada F, et al.Magnetic viscosity and coercivity analysis in mechanically alloyed and melt-spun NdDyFeB magnets[J]. J. Magn. Magn. Mater., 1998, 185: 180
[16] Villas-Boas V, Missell F P, Schneider G, et al.Coercivity and magnetic viscosity in Nd80Fe15B5[J]. Solid State Commun., 1990, 74: 683
[17] Martinez J C G, Missell F P, Landgraf F J G. Magnetic viscosity and texture in sintered NdFeB and NdDyFeB magnets[J]. J. Magn. Magn. Mater., 1988, 73: 267
[18] Collocott S J, Dunlop J B.The fluctuation field and anomalous magnetic viscosity in commercial NdFeB alloys, AlNiCo and the bulk amorphous ferromagnets Nd60Fe30Al10 and Nd60Fe20Co10Al10[J]. J. Magn. Magn. Mater., 2008, 320: 2089
[19] Jahn L, Schumann R, Rodewald W.Magnetic viscosity of modified neodymium iron boron magnets with high coercivities[J]. J. Magn. Magn. Mater., 1996, 153: 302
[20] Zhang H W, Zhang W Y, Yan A R, et al.Magnetization reversal behavior and magnetic viscosity of nanocomposite Nd3.6Pr5.4Fe83Co3B5 prepared by melt spinning[J]. Acta Phys. Sin., 1999, 48(suppl.): S211(张宏伟, 张文勇, 阎阿儒等. 快淬Nd3.6Pr5.4Fe83Co3B5薄带的反磁化行为和磁黏滞性 [J]. 物理学报, 1999, 48(增刊): S211)
[21] Li W D, Tan X H, Ren K Z, et al.Magnetic viscosity behavior and exchange interaction for Nd2Fe14B/α-Fe nanocomposite permanent alloys[J]. Acta Metall. Sin., 2016, 52: 561(李维丹, 谭晓华, 任科智等. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用 [J]. 金属学报, 2016, 52: 561)
[22] Givord D, Lienard A, Tenaud P, et al.Magnetic viscosity in Nd-Fe-B sintered magnets[J]. J. Magn. Magn. Mater., 1987, 67: L281
[23] Néel L.Théorie du tra?nage magnétique des ferromagnétiques en grains fins avec application aux terres cuites[J]. Ann. Geophys., 1949, 5: 99
[24] Phillips J H, Street R, Woolley J C.LIX. Magnetic viscosity in precipitation alloys: FeNiAl, Fe2NiAl and Alnico[J]. Philos. Mag., 1954, 45: 505
[25] Phillips J H, Woolley J C, Street R.The influence of temperature on magnetic viscosity[J]. Proc. Phys. Soc., 1955, 68B: 345
[26] Néel L.Bases d’une nouvelle théorie générale du champ coercitif[J]. Ann. Univ. Grenoble, 1946, 22: 299
[27] Yang N, Dennis K W, McCallum R W, et al. Role of the Fe sublattice on the Invar anomaly in R2Fe14B compounds[J]. J. Appl. Phys., 2003, 93: 7990
[28] Ma Q F, Fang R S, Xiang L C, et al.Handbook of Practical Thermophysical Properties [M]. Beijing: China Agricultural Machinery Press, 1986: 78)(马庆芳, 方荣生, 项立成等. 实用热物理性质手册[M]. 北京: 中国农业机械出版社, 1986: 78)
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[3] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[4] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[5] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[6] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[7] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[8] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[9] Weidan LI,Xiaohua TAN,Kezhi REN,Jie LIU,Hui XU. MAGNETIC VISCOSITY BEHAVIOR AND EXCHANGE INTERACTION FOR Nd2Fe14B/α-Fe NANOCOMPOSITE PERMANENT ALLOYS[J]. 金属学报, 2016, 52(5): 561-566.
[10] ZHAO Suling CHEN Jing WANG Yilong. INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE–SHELL COMPOSITE PARTICLES[J]. 金属学报, 2012, 48(8): 977-982.
[11] CHAO Yuesheng, WANG Li, ZHANG Yanhui, ZHU Hanxian, LUO Liping. EFFECT OF LOW-TEMPERATURE VACUUM ANNEALING ON THE MAGNETIC PULSED AMORPHOUS Fe52Co34Hf7B6Cu1 ALLOY[J]. 金属学报, 2012, 48(6): 749-752.
[12] LIU Rongming, YUE Ming, ZHANG Dongtao,Liu Weiqiang, ZHANG Jiuxing. PREPARATION, STRUCTURE AND MAGNETIC PROPERTIES OF SmCo5 NANOPARTICLES AND NANOFLAKES[J]. 金属学报, 2012, 48(4): 475-479.
[13] LI Dingpeng SONG Xiaoyan ZHANG Zhexu LU Nianduan QIAO Yinkai LIU Xuemei. PREPARATION AND PROPERTIES OF SINGLE–PHASE Sm5Co2 NANOCRYSTALLINE ALLOY[J]. 金属学报, 2012, 48(10): 1248-1252.
[14] TANG Ruihe YANG Zhigang ZHANG Chi YANG Bai LIU Xiaofang YU Ronghai. MICROSTRUCTURE, MAGNETIC AND MAGNETOTRANSPORT PROPERTIES OF Co-C NANOCOMPOSITE THIN FILMS[J]. 金属学报, 2011, 47(4): 469-474.
[15] WANG Qian JIANG Chengbao. STUDY ON SmCo PERMANENT MAGNETS UNDER 350℃ MODERATE TEMPERATURES[J]. 金属学报, 2011, 47(12): 1605-1610.
No Suggested Reading articles found!