Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 811-820    DOI: 10.11900/0412.1961.2016.00039
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIESOF EXTRUDED PURE Mg WITH Bi ADDITION
Shuaiju MENG1,Hui YU1,2(),Huixing ZHANG3,Hongwei CUI4,Zhifeng WANG1,Weimin ZHAO1
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
2 Light Metal Team, Korea Institute of Materials Science, Changwon 51508, Republic of Korea .
3 Mechanical and Material School, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China .
4 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China.
Cite this article: 

Shuaiju MENG,Hui YU,Huixing ZHANG,Hongwei CUI,Zhifeng WANG,Weimin ZHAO. MICROSTRUCTURE AND MECHANICAL PROPERTIESOF EXTRUDED PURE Mg WITH Bi ADDITION. Acta Metall Sin, 2016, 52(7): 811-820.

Download:  HTML  PDF(1824KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the increasing demand of low density and high strength Mg alloys for the automobile, railway, and aerospace industries, the exploration of cost-effective RE-free Mg alloys becomes more and more attractive. Instead of Mg-Sn based system, the Mg-Bi alloy system seems to satisfy this requirement as a potential candi date, since it shows typical precipitation-type phase equilibrium and contains thermal stable Mg3Bi2 phases, which exhibit a high melting temperature of 821 ℃ comparable to those in RE-bearing Mg alloy. In addition, the fine Mg3Bi2 plates on the prismatic plane were reported to be more effective than the more commonly observed basal plates for precipitation-hardening. In this work, pure Mg with/without 6% Bi (mass fraction) additions were extruded, and the corresponding microstructure and mechanical properties were investigated. The results show that dynamic recrystallization (DRX) occurs in both alloys after extrusion and these two kinds of specimens exhibit similar extrusion texture. However, the as-extruded Mg-6Bi alloy represents finer and homogenous microstructure, and the average grain size (AGS) decreases from 30 μm to 4 μm when 6% Bi added. In addition, the Mg-6Bi alloy contains strip-like fragmented Mg3Bi2 particles along the extrusion direction and fine Mg3Bi2 precipitates, and demonstrates superior mechanical properties with tensile yield strength of 189 MPa, ultimate tensile strength of 228 MPa, and an elongation of 19.9%. There is a large number of nano-scale Mg3Bi2 particles in the tensile fracture surface of Mg-6Bi alloy. And there is a large number of twins in the microstructure of compression fractured pure Mg sample; while for the Mg-6Bi alloy specimen, with a large number of second phase particles on the α-Mg matrix, little twins are observed. Moreover, the Mg-6Bi alloy also gives a low tension-compression yield asymmetry with yield asymmetric ratio of 1.01. These significantly improvement of mechanical properties are mainly attributed to the combined effects of grain refinement and large quantity of co-exist micro/nano-size Mg3Bi2 particles.

Key words:  Mg alloy      extrusion      microstructure      mechanical property     
Received:  26 January 2016     
Fund: Supported by Research Foundation of Higher Education School Scientific Research Program from Hebei Education Department (No.QN2015035), Graduate Student Innovation Project of Hebei Province (No.220056), Outstanding Youth Scholar Science and Technology Innovation Program of Hebei University of Technology (HEBUT) (No.2015-002), Natural Science Foundation of Hebei Province (No.E2016202130), Research Foundation of Introduction Talent, HEBUT (No.208002) and Young Scientist Exchange Program between Korea and China (No.201510)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00039     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/811

Point Mass fraction / % Atomic fraction / %
Mg Bi Mg Bi
A 42.65 57.35 86.47 13.53
B 83.08 16.92 97.69 2.31
C 97.21 2.79 99.67 0.33
Table 1  EDS analysies of points A, B and C in Fig.1c
Fig.1  XRD spectra of as-cast pure Mg (a) and Mg-6Bi alloy (b), and SEM image of Mg-6Bi alloy (c)
Fig.2  OM images of as-cast pure Mg (a) and Mg-6Bi alloy at low (b) and high (c) magnification, and solution treated Mg-6Bi alloy at 500 ℃ for 5 h (d)
Fig.3  Microstructures of as-extruded pure Mg (a, b) and Mg-6Bi alloy (c, d) at low (a, c) and high (b, d) magnification (ED—extrusion direction)
Fig.4  TEM bright-field images of Mg-6Bi alloy at low (a) and high (b, c) magnification and EDS analysis (d) of second phase in Fig.4b (Inset in Fig.4c shows SAED pattern of Mg3Bi2)
Fig.5  EBSD images (a, b), grain size distributions (c, d) and inverse pole figures (e, f) of as-extruded pure Mg (a, c, e) and Mg-6Bi alloy (b, d, f) (Inset in Fig.5a shows grain orientation)
Fig.6  Tensile (a) and compressive (b) stress-strain curves of the extruded pure Mg and Mg-6Bi alloy
Table 2  Microstructural characteristics and mechanical properties of as-extruded pure Mg and Mg-6Bi alloy
Fig.7  Fracture morphologies of pure Mg (a, b) and Mg-6Bi alloy (c, d) at low (a, c) and high (b, d) magnifications after tensile test
Fig.8  OM images of as-extruded pure Mg (a, b) and Mg-6Bi alloy (c, d) at low (a, c) and high (b, d) magnifications after compressive test
[1] Ding W J, Zeng X Q.Acta Metall Sin, 2010; 46: 1450
[1] (丁文江, 曾小勤. 金属学报, 2010; 46: 1450)
[2] Zhu S, Easton M A, Abbott T B, Nie J F, Dargusch M S, Hort N, Gibson M A.Metall Mater Trans, 2015; 46A: 3543
[3] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37
[4] Chen Z H. Wrought Magnesium Alloy.Beijing: Chemical Industry Press, 2005: 1
[4] (陈振华. 变形镁合金. 北京: 化学工业出版社, 2005: 1)
[5] Mathaudhu S N, Luo A A, Neelameggham N R, Nyberg E A, Sillekens W H.Essential Readings in Magnesium Technology. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014: 1
[6] Meyers M A, V?hringer O, Lubarda V A.Acta Mater, 2001; 49: 4025
[7] Wang Y N, Huang J C.Mater Trans, 2007; 48: 184
[8] Xu S W, Oh-ishi K, Sunohara H, Kamado S.Mater Sci Eng, 2012; A558: 356
[9] Jain J, Poole W J, Sinclair C W, Gharghouri M A.Scr Mater, 2010; 62: 301
[10] Yu H, Park S H, You B S.Mater Sci Eng, 2014; A610: 445
[11] Wang M. Master Thesis, Shenyang Aerospace University, 2012
[11] (王猛. 沈阳航空航天大学硕士学位论文, 2012)
[12] Zhang H. Master Thesis, Taiyuan University of Technology, 2014
[12] (张辉. 太原理工大学硕士学位论文, 2014)
[13] Zang H, Han B, Xu C X, Liu Q, Wang M.Foundry, 2014; 63: 1138
[13] (张辉, 韩宝, 许春香, 刘强, 王淼. 铸造, 2014; 63: 1138)
[14] Zhang Q, Li Q A, Zhang X Y, Zhou W.Foundry, 2011; 60: 857
[14] (张清, 李全安, 张兴渊, 周伟. 铸造, 2011; 60: 857)
[15] Zhao Y H, Wang M.Foundry, 2012; 61: 758(赵玉华, 王猛. 铸造, 2012; 61: 758)
[16] Meng E Q. Master Thesis, Xi'an University of Technology, 2008
[16] (孟恩强. 西安理工大学硕士学位论文, 2008)
[17] Liu C M, Zhu X R, Zhou H T. Magnesium Phase Diagram.Changsha: Central South University Press, 2006: 256
[17] (刘楚明, 主修荣, 周海涛. 镁合金相图. 长沙: 中南大学出版社, 2006: 256)
[18] Nie J F.Metall Mater Trans, 2012; 43A: 3891
[19] Remennik S, Bartsch I, Willbold E, Witte F, Shechtman D.Mater Sci Eng, 2011; B176: 1653
[20] Sasaki T T, Ohkubo T, Hono K.Scr Mater, 2009; 61: 72
[21] Yuan G Y, Sun Y S, Ding W J.Mater Sci Eng, 2001; A308: 38
[22] Guo E J, Ma B X, Wang L P.J Mater Process Technol, 2008; 206: 161
[23] Wang Y X, Fu J W, Wang J, Luo T J, Dong X G, Yang Y S.Acta Metall Sin, 2011; 47: 410
[23] (王亚霄, 付俊伟, 王晶, 罗天骄, 董旭光, 杨院生. 金属学报, 2011; 47: 410)
[24] Huang Z, Liu W, Qi W, Xu J, Zhou N.J Magne Alloy, 2015; 3: 29
[25] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier, 2004: 20
[26] Feng H, Liu H P, Cao H, Yang Y, Xu Y C, Guan J Y.Mater Sci Eng, 2015; A639: 1
[27] Yu H, Kim Y M, You B S, Yu H S, Park S H.Mater Sci Eng, 2013; A559: 798
[28] Ali Y, Qiu D, Jiang B, Pan F, Zhang M X.J Alloys Compd, 2015; 619: 639
[29] Yu H, Park S H, You B S, Kim Y M, Yu H S, Park S S.Mater Sci Eng, 2013; A583: 25
[30] Nie J F, Muddle B C, Polmear I J.In: Driver J H, Dubost B, Durand F, Fougeres R, Guyot P, Sainfort P, Suery M eds., Aluminium Alloys: Their Physical and Mechanical Properties, Stafa-Zurich, Switzerland: Trans Tech Publications Ltd., 1996; 217: 1257
[31] Liu Q.Acta Metall Sin, 2010; 46: 1458
[31] (刘庆. 金属学报. 2010; 46: 1458)
[32] Chen Z H, Xia W J, Cheng Y Q, Fu D F.Chin J Nonferrous Met, 2005; 15: 1
[32] (陈振华, 夏伟军, 程永奇, 傅定发. 中国有色金属学报, 2005; 15: 1)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!