Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (5): 592-598    DOI: 10.11900/0412.1961.2015.00342
Orginal Article Current Issue | Archive | Adv Search |
TRIBOLOGICAL PERFORMANCE OF SUPER HYDRO-PHOBIC TITANIUM ALLOY SURFACE INARTIFICIAL SEAWATER
Feng LIAN(),Luping ZANG,Qiukuan XIANG,Huichen ZHANG
College of Transportation Equipments and Ocean Engineering, Dalian Maritime University, Dalian 116026, China
Cite this article: 

Feng LIAN,Luping ZANG,Qiukuan XIANG,Huichen ZHANG. TRIBOLOGICAL PERFORMANCE OF SUPER HYDRO-PHOBIC TITANIUM ALLOY SURFACE INARTIFICIAL SEAWATER. Acta Metall Sin, 2016, 52(5): 592-598.

Download:  HTML  PDF(1149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The service environment faced by marine equipment and its key friction pair parts are much more severe than that on land surface. The life cycle and safety of the hydraulic and power transmission system, which directly get in touch with the seawater, depends largely on the tribological behavior of the components in the seawater. Titanium alloy is an ideal material used for ocean engineering, however due to its poor friction performance its life cycle may be shortened when working in the environment with friction and wear. In order to improve the tribological performance of titanium alloy in seawater, laser processing was used to build super hydrophobic with grid and dot micro-structure on Ti6Al4V alloy surface. Tribological performance was evaluated by HSR-2M high speed reciprocating friction test machine in artificial seawater, and compared with in water (distilled water). The results show that the friction coefficients and wear losses (volume) of super hydrophobic Ti6Al4V alloy surface are significantly smaller than that of the Ti6Al4V alloy substrate. The friction coefficients of surface with dot and grid reduced by 17.8% and 11.7%, and wear losses (volume) reduced by 36.8% and 57.5% respectively in artificial seawater. The friction coefficient of super hydrophobic Ti6Al4V alloy surface in artificial seawater is smaller than that in water while the wear loss has the opposite phenomena. The tribological performances of titanium alloy in artificial seawater are significantly improved by the build of super hydrophobic Ti6Al4V alloy surface.

Key words:  super hydrophobic      titanium alloy      artificial seawater      friction coefficient      wear loss     
Received:  30 June 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51275064 and 50975036), Fundamental Research Funds for the Central Universities (No.3132014303) and Industrial Research Program of Liaoning Province (No.2012220006)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00342     OR     https://www.ams.org.cn/EN/Y2016/V52/I5/592

Specimen Contact angle Surface energy
(o) (mNm-1)
Vacancy 56.8 145.56
Grid surface 156.8 0.40
Dot surface 154.6 0.57
Table 1  Contact angle and surface energy of vacancy and specimens with grid and dot microstructures
Fig.1  3D topographies of surface of specimens with grid (a) and dot (b) microstructures
Specimen In water In seawater
Vacancy 0.549 0.512
Grid surface 0.469 0.452
Dot surface 0.442 0.421
Table 2  Average values of friction coefficient of vacancy and specimens with grid and dot microstructures
Fig.2  Friction coefficients of vacancy and specimens with grid and dot microstructures in water (a) and seawater (b)
Fig.3  Grinding cracks of vacancy (a, d), and specimens with grid (b, e) and dot (c, f) microstructures in water (a~c) and sea water (d~f)
Specimen In water In seawater
107 mm3 107 mm3
Vacancy 9.3 12.7
Grid surface 2.8 5.4
Dot surface 3.0 7.8
Table 3  Wear loss of vacancy and specimens with grid and dot microstructures
Fig.4  Wear debris of vacancy in water (a) and seawater (b), and corresponding EDS results (c, d)
Fig.5  Grinding crack of vacancy in water (a) and seawater (b)
[1] Guo F, Wang Y X, Xue Q J, Wang L P.J Tribol, 2014; 34: 608
[1] (郭峰, 王永欣, 薛群基, 王立平. 摩擦学学报, 2014; 34: 608)
[2] Cui G J, Bi Q L, Zhu S Y, Yang J, Liu W M.Tribol Int, 2012; 53: 76
[3] Wang Z T, Zhou X H, Zhao G G.Trans Nonferrous Met Soc China, 2008; 18: 831
[4] Feng S R, Tang H B, Zhang S Q, Wang H M.Trans Nonferrous Met Soc China, 2012; 22: 1667
[5] Zaveri N, Mahapatra M, Deceuster A, Peng Y, Li L J, Zhou A H.Electrochim Acta, 2008; 53: 5022
[6] Zhong H S, Li J L, Wang Y X, Wang L P, Xue Q J.J Vac Sci Technol, 2014; 34: 961
[6] (钟华生, 李金龙, 王永欣, 王立平, 薛群基. 真空科学与技术学报, 2014; 34: 961)
[7] Deng K, Yu M, Dai Z D, Liang J, Zhang G A, Liu W M.Rare Met Mater Eng, 2014; 43: 1099
[7] (邓凯, 于敏, 戴振东, 梁军, 张广安, 刘维民. 稀有金属材料与工程, 2014; 43: 1099)
[8] Xi J M, Feng L, Jiang L.Appl Phys Lett, 2008; 92: 53101
[9] Burton Z, Bhushan B.Ultramicroscopy, 2006; 106: 709
[10] Mehdi S, Ahmet T A.Appl Surf Sci, 2009; 256: 710
[11] Wan Y, Wang Z Q, Liu Y F.J Inorg Mater, 2012; 27: 390
[11] (万勇, 王中乾, 刘义芳. 无机材料学报, 2012; 27: 390)
[12] Wang H Y, Meng Y, Zhao J Y, Zhu Y J.J Mater Eng, 2014; (3): 90
[12] (汪怀远, 孟旸, 赵景岩, 朱艳吉. 材料工程, 2014; (3): 90)
[13] Thieme M, Streller F, Simon F, Frenzel R, White A J.Appl Surf Sci, 2013; 283: 1041
[14] Jung Y C, Bhushan B.Nanotechnology, 2006; 17: 4970
[15] Wang S T, Feng L, Jiang L.Appl Surf Sci, 2006; 18: 767
[16] Liang J S, Liu K Y, Wang D Z, Li H, Li P F, Li S Z, Su S J, Xu S C, Luo Y.Appl Surf Sci, 2015; 338: 126
[17] Kang Z X, Guo M J.Acta Metall Sin, 2013; 49: 629
[17] (康志新, 郭明杰. 金属学报, 2013; 49: 629)
[18] Lin Y Z, Wang T C.J Shandong Univ Sci Technol (Nat Sci), 2008; 27(2): 44
[18] (林跃忠, 王铁成. 山东科技大学学报(自然科学版), 2008; 27(2): 44)
[19] Zhang H, Lamb R, Lewis J.Sci Technol Adv Mater, 2005; 6: 236
[20] Cassie A B D, Baxter S.Trans Faraday Soc, 1944; 40: 546
[21] Xia F, Jiang L.Adv Mater, 2008; 20: 2842
[22] Wen S Z. Nano Tribology.Beijing: Tsinghua University Press, 1998: 103
[22] (温诗铸. 纳米摩擦学. 北京: 清华大学出版社, 1998: 103)
[23] Wang J H, Song M, Li J L, Wang X B.Tribology, 2011; 31: 118
[23] (王建华, 宋敏, 李金龙, 王晓波. 摩擦学学报, 2011; 31: 118)
[24] Chen J, Yan F Y.Trans Nonferrous Met Soc China, 2012; 22: 1356
[25] Ding H Y, Dai Z D.Tribology, 2008; 28: 139
[25] (丁红燕, 戴振东. 摩擦学学报, 2008; 28: 139)
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[10] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[11] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[12] LIU Ming, YAN Fuwen, GAO Chenghui. Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials[J]. 金属学报, 2021, 57(10): 1333-1342.
[13] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[14] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
No Suggested Reading articles found!