Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 184-190    DOI: 10.11900/0412.1961.2015.00212
Orginal Article Current Issue | Archive | Adv Search |
ELEMENT LOSS OF AZ91D MAGNESIUM ALLOY DURING SELECTIVE LASER MELTING PROCESS
Kaiwen WEI1,2,Zemin WANG2(),Xiaoyan ZENG2
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article: 

Kaiwen WEI,Zemin WANG,Xiaoyan ZENG. ELEMENT LOSS OF AZ91D MAGNESIUM ALLOY DURING SELECTIVE LASER MELTING PROCESS. Acta Metall Sin, 2016, 52(2): 184-190.

Download:  HTML  PDF(3463KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloys have attracted more attentions due to their low densities and excellent specific strengths. However, proper manufacturing methods are still needed to promote further applications of magnesium alloys due to the shortcomings of conventional processing methods. As one of the most promising additive manufacturing technologies, selective laser melting (SLM) was utilized to process the most commonly-used AZ91D magnesium alloy in this work. Element vaporization mechanism during the forming process and the influence of element vaporization on chemical composition, microstructure, and mechanical properties of the final products were investigated using OM, SEM, EDS, XRF and XRD. The results show that the relative content of Mg in the SLM-processed samples (86.61%~88.68%) was lower than that in the original AZ91D powders (90.63%) , whereas the relative content of Al in the former ones (10.40%~12.56%) was higher than its counterpart in the latter ones (8.97%). This variation matches well with the calculation by Langmuir model, demonstrating that element vaporization of AZ91D mainly targets at Mg. With the increase of laser energy density (EV), weight ratio of Mg to Al (η) in the SLM-processed samples first increased, then decreased and finally tended to be constant. η of the sample prepared at 55.6 J/mm3 (sample No.8) presented a smallest difference with that of the original powders. A model illustrating analytic relationship between η and EV was established by mathematical regression with the fitting index R2 being 0.858. The sample processed at 166.7 J/mm3 (sample No.1) underwent one of the most remarkable compositional variation and exhibited a typical solidified microstructure similar to the die-cast AZ91D in which net-like β-Mg17Al12 precipitates were distributed around the α-Mg matrix. However, β-Mg17Al12 content as well as solid solubility of Al in α-Mg matrix was much higher in sample No.1. The enhanced tensile strength and micro-hardness as well as the deteriorated elongation of sample No.1 could be attributed to the composition variation during SLM process.

Key words:  selective laser melting      AZ91D magnesium alloy      element loss      chemical composition      microstructure      mechanical property     
Received:  13 April 2015     
Fund: Supported by National Natural Science Foundation of China (No.51075164), High Technology Research and Development Program of China (No.2013AA031606) and Fundamental Research Funds for the Central Universities (NoHUST-2014QT006)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00212     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/184

Fig.1  SEM image (a) and granulometric distribution (b) of AZ91D powders
Sample No. P / W V / (mmin-1) S / μm L / μm
1 200 20 90 40
2 200 20 110 40
3 200 30 90 40
4 200 30 110 40
5 200 40 90 40
6 200 40 110 40
7 200 50 90 40
8 200 60 90 40
9 200 50 110 40
10 140 100 80 20
11 200 60 110 40
Table 1  Parameters for selective laser melting (SLM) process
Sample No. Mg Al Zn Mn
1 86.68 12.53 0.58 0.22
2 86.61 12.56 0.61 0.22
3 86.85 12.36 0.58 0.22
4 87.70 11.48 0.60 0.22
5 87.96 11.24 0.60 0.22
6 87.57 11.61 0.61 0.21
7 88.30 10.71 0.76 0.24
8 88.68 10.40 0.70 0.22
9 88.44 10.66 0.68 0.21
10 87.66 11.39 0.67 0.19
11 87.22 11.94 0.64 0.20
Table 2  Chemical composition of the SLM-processed samples (mass fraction / %)
Fig.2  XRD spectrum of the recondensed metal dust

Ji=4.375×10-4γiXiPi0MiT12(1)

Fig.3  Burning rate of Mg (JMg) and the alloying elements ratios in AZ91D molten pools under various temperatures (JAl, JZn and JMn—burning rates of Al, Zn and Mn, respectively)
Fig.4  η of different samples and the fitted relation between η and EV (η—weight ratio of Mg to Al in SLM-processed samples, EV—laser energy density)
Fig.5  XRD spectrum of SLM-processed sample No.1
Fig.6  SEM image of SLM-processed sample No.1 (a) and OM image of die-cast AZ91D Mg alloy (b)
Fig.7  SEM images (a, b) and EDS analyses of α-Mg matrix in the rectangle areas (c, d) of SLM-processed sample No.1 (a, c) and die-cast AZ91D (b, d)
Sample Ultimate strength / MPa Yield strength / MPa Elongation / % Micro-hardness / HV
No.1 294~298 251~256 1.68~1.99 90~108
Die-cast AZ91D 230 160 3 61.3~63.7[29]
Table 3  Mechanical properties of the SLM-processed sample No.1 and die-cast AZ91D Mg alloy
[1] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37
[2] Wang Y X, Fu J W, Wang J, Luo T J, Dong X G, Yang Y S.Acta Metall Sin, 2011; 47: 410
[2] (王亚霄, 付俊伟, 王晶, 罗天骄, 董旭光, 杨院生. 金属学报, 2011; 47: 410)
[3] Frank W.Acta Biomater, 2010; 6: 1680
[4] Zhen R, Sun Y S, Bai J, Sun J J, Pi J H.Acta Metall Sin, 2012; 48: 733
[4] (甄睿, 孙扬善, 白晶, 孙晶晶, 皮锦红. 金属学报, 2012; 48: 733)
[5] Kulekci M K.Int J Adv Manuf Technol, 2008; 39: 851
[6] Blawert C, Hort N, Kainer K U.Trans Indian Inst Met, 2004; 57: 397
[7] Zheng Y F, Gu X N, Li N, Zhou W R.Mater Chin, 2011; 30(4): 30
[7] (郑玉峰, 顾雪楠, 李楠, 周维瑞. 中国材料进展, 2011; 30(4): 30)
[8] Rashid R A R, Sun S J, Wang G, Dargusch M S.Int J Pr Eng Man, 2013; 14: 1263
[9] Zhang X H, Jiang J F, Luo S J.Chin J Nonferrous Met, 2009; 19: 1720
[9] (张晓华, 姜巨福, 罗守靖. 中国有色金属学报, 2009; 19: 1720)
[10] Zhang J L, Feng Z Y, Hu L Q, Wang S B, Xu B S.Acta Metall Sin, 2012; 48: 607
[10] (张金玲, 冯芝勇, 胡兰青, 王社斌, 许并社. 金属学报, 2012; 48: 607)
[11] Li Q, Li Z F, Li Y F, Luo S J, Gao X R.Foundry, 2008; 57: 895
[11] (李强, 李周复, 李远发, 罗守靖, 高小荣. 铸造, 2008; 57: 895)
[12] Wu L, Zhu H T, Gai X Y, Wang Y Y.J Prosthet Dent, 2014; 111: 51
[13] Ma M M, Wang Z M, Gao M, Zeng X Y.J Mater Process Technol, 2015; 215: 142
[14] Gu D D, Hagedorn Y C, Meiners W, Meng G B, Batista R J S, Wissenbach K, Poprawe R.Acta Mater, 2012; 60: 3849
[15] Gu D D, Shen Y F, Lu Z J.Mater Lett, 2009; 63: 1577
[16] Liu S H, Liu J L, Liu H, Duan Y W, Quan W W.Laser Technol, 2010; 34: 459
[16] (刘顺洪, 柳家良, 刘辉, 段元威, 权雯雯. 激光技术, 2010; 34: 459)
[17] Kolodziejczak P, Kalita W.J Mater Process Technol, 2009; 209: 1122
[18] Guan K, Wang Z M, Gao M, Li X Y, Zeng X Y.Mater Des, 2013; 50: 581
[19] Wang Z M, Guan K, Gao M, Li X Y, Chen X F, Zeng X Y.J Alloys Compd, 2012; 513: 518
[20] Block-Bolten A, Eagar T W.Metall Mater Trans, 1984; 15B: 461
[21] Khan P A A, Debroy T.Metall Mater Trans, 1984; 15B: 641
[22] Gale W F, Totemeier T C.Smithells Metals Reference Book. 8th Ed., Oxford, UK: Elsevier, 2004: 8
[23] Abderrazak K, Bannour S, Mhiri H, Lepalec G, Autric M.Comp Mater Sci, 2009; 44: 858
[24] Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I.Rapid Prototyping J, 2012; 18: 201
[25] Kouadri A, Barrallier L.Mater Sci Eng, 2006; A429: 11
[26] Min D, Shen J, Lai S Q, Chen J, Xu N, Liu H.Opt Laser Eng, 2011; 49: 89
[27] Dargusch M S, Pettersen K, Nogita K, Nave M D, Dunlop G L.Mater Trans, 2006; 47: 977
[28] Dahle A K, Lee Y C, Nave M D, Schaffer P L, StJohn D H.J Light Met, 2001; 1: 61
[29] Wahba M, Mizutani M, Kawahito Y, Katayama S.Mater Des, 2012; 33: 569
[30] Niknejad S T, Liu L, Nguyen T, Lee M Y, Esmaeili S, Zhou N Y.Metall Mater Trans, 2013; 44A: 3747
[31] Wang Z M, Gao M, Tang H G, Zeng X Y.Mater Charact, 2011; 62: 943
[32] Liu L M.Welding and Joining of Magnesium Alloys. Cambridge, UK: Woodhead Publishing, 2010: 51
[33] Zhang G J, Long S Y, Cao F H.Spec Cast Nonferrous Alloys, 2009; 29: 848
[33] (张广俊, 龙思远, 曹凤红. 特种铸造及有色合金, 2009; 29: 848)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!