Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 161-167    DOI: 1011900/0412.1961.2015.00245
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS
Xiaohong YOU1,Ganggang WANG1,Jun WANG2,Tao XU2,Hongyu ZHANG3,Hua WEI3()
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030000, China
2 Military Representative Office in Factory, Xi'an 710077, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Xiaohong YOU,Ganggang WANG,Jun WANG,Tao XU,Hongyu ZHANG,Hua WEI. EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS. Acta Metall Sin, 2016, 52(2): 161-167.

Download:  HTML  PDF(7394KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Co-based alloy has high strength, good corrosion and wear resistance, and is widely used in aviation industry, nuclear industry. The cast Co-based alloys has high hardness brittleness, but the toughness is low, which limits its wide use. The CoCrW alloy prepared by powder metallurgy process has high toughness, at the same time, the mechanical properties of the CoCrW alloy can be changed by heat treatment. In this work, the effect of solid solution treatment on the microstructure and mechanical properties of the hot pressed alloy was studied by SEM, XRD and TEM, hardness test, room-temperature tensile and wear experiment. The results show that the microstructure of the as-hot pressed and solid solution state CoCrW alloy are both composed of M23C6, M6C, CrCo intermetallic compounds and γ-Co matrix, the contents of M23C6 and prior particle boundaries decrease remarkably after solution treatment, meanwhile, the toughness and wear resistance of the alloy are improved. With the increase of solid solution temperature and time, the hardness and tensile strength at room temperature of CoCrW alloys in crease first and then decrease.

Key words:  CoCrW alloy      hot pressing      microstructure      solid solution treatment      mechanical property     
Received:  03 May 2015     
Fund: Supported by National Natural Science Foundation of China (No.51201161)

URL: 

https://www.ams.org.cn/EN/1011900/0412.1961.2015.00245     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/161

Fig.1  SEM image of CoCrW alloy powder for hot pressing
Fig.2  BSE images of CoCrW alloys as-hot pressed (a) and after heat treatment at 1000 ℃, 4 h (b), 1150 ℃, 4 h (c) and 1150 ℃, 12 h (d) (PPB—prior particle boundry)
Fig.3  XRD spectra of as-hot pressed and heat-treated CoCrW alloys
Fig.4  Bright-field TEM image of as-hot pressed CoCrW alloy (a) and SAED patterns corresponding to areas A (b), B (c), C (d) and D (e)
Area V Cr Fe Co Ni W
Dark phase 25.82 40.61 1.75 16.27 1.19 14.36
Dark grey phase 3.59 26.27 5.34 48.56 4.92 11.32
light grey phase 3.84 30.80 3.97 36.48 2.60 22.32
Bright phase 6.60 21.81 2.11 24.11 1.61 43.76
Table 1  EDS results of as-hot pressed CoCrW alloy (mass fraction / %)
Heat treatment condition M6C M23C6 CrCo γ-Co
As-hot pressed 11.10 2.36 36.54 50.00
1000 ℃, 4 h 10.82 2.15 39.75 47.28
1150 ℃, 4 h 9.90 2.05 36.15 51.90
1150 ℃, 12 h 11.14 0.74 35.92 52.19
Table 2  Area fraction of phases in as-hot pressed and heat treated CoCrW alloys (area fraction / %)
Heat treatment condition Macro-hardness / HRC Micro-hardness / HV
As-hot pressed 58.67 698.09
1000 ℃, 4 h 59.50 708.68
1150 ℃, 4 h 58.33 699.48
1150 ℃, 12 h 57.50 654.02
Table 3  Macro- and micro-hardness of as-hot pressed and heat treated CoCrW alloys
Fig.5  Tensile properties of as-hot pressed and heat treated CoCrW alloys
Fig.6  SEM images of tensile fractures of as-hot pressed CoCrW alloys (a) and after heat treatment at 1000 ℃, 4 h (b), 1150 ℃, 4 h (c) and 1150 ℃, 12 h (d)
Fig.7  SEM images of wear tracks of as-hot pressed CoCrW alloy (a) and after heat treatment at 1000 ℃, 4 h (b), 1150 ℃, 4 h (c) and 1150 ℃, 12 h (d)
Heat treatment condition Average volume loss / 10-2 mm3 Wear rate / (10-5 mm3mN-1)
As-hot pressed 4.92 1.37
1000 ℃, 4 h 4.59 1.27
1150 ℃, 4 h 4.49 1.25
1150 ℃, 12 h 4.23 1.17
Table 4  Ball-on-disc wear test results of as-hot pressed and heat treated CoCrW alloys
[1] Kuzucu V, Ceylan M, Celik H, Aksoy I.J Mater Process Technol, 1997; 69: 257
[2] Lemarie E, Calvar M L.Wear, 2001; 249: 338
[3] Otterloo J D, Hosson J D.Acta Mater, 1997; 45: 1225
[4] Ashworth M A, Bryar J C, Jacobs M H, Davies S.Powder Metall, 1999; 42: 243
[5] Ahmed R, Ashraf A, Elameen M, Faisal N F, El-Sherik A M, Elakwah Y O, Goosen M F A.Wear, 2014; 312: 70
[6] Northwood D O.Mater Des, 1985; 6: 58
[7] Frenk A, Kurz W.Wear, 1994; 174: 81
[8] Crook P.Adv Mater Process, 1994; 145: 27
[9] Sims C T, Stoloff N S, Hagel W C. Superalloys II. New York: Wiley, 1987: 140
[10] Fu Z M, Song K J.Chinese Sci Bull, 1987; 5: 390
[10] (傅祖明, 宋科匠. 科学通报, 1987; 5: 390)
[11] Yu H, Ahmed R, Lovelock H D.In: Davies S ed., Proc World Congress Eng 2007, Vol II, London: Newswood Limited, 2007: 435
[12] Malayoglu U, Neville A.Wear, 2003; 255: 181
[13] Malayoglu U, Neville A.Wear, 2005; 259: 219
[14] Huang P Y. Powder Metallurgy Principle.2nd Ed., Beijing: Metallurgical Industry Press, 2006: 331
[14] (黄培云. 粉末冶金原理. 第2版, 北京: 冶金工业出版社, 2006: 331)
[15] Ahmed R, Lovelock H D, Davies S, Faisal N H.Tribol Int, 2013; 57: 8
[16] Jiang W H, Guan H R, Hu Z Q.Mater Sci Eng, 1999; A271: 101
[17] Larson J M.In: Hausner H H, Smith W E eds., Proc 1973 Int Pow der Metall Conf, Berlin: Springer, 1974: 537
[18] Wallace W, Dunthorne H B, Sprague R A.Can Metall Quart, 1974; 13: 517
[19] Kear K H.In: Hausner H H ed., Proc 1970 Int Powder Metally Conf, Berlin: Springer, 1971: 85
[20] Guo W M, Wu J T, Zhang F G, Zhao M H.J Iron Steel Res Int, 2006; 13(5): 65
[21] Rao G A, Kumar M, Srinivas M, Sarma D S.Mater Sci Eng, 2003; A355: 114
[22] Mao J, Yang W H, Wang W X, Zou J W, Zhou R F.Acta Metall Sin, 1993; 29: 187
[22] (毛健, 杨万宏, 汪武祥, 邹金文, 周瑞发. 金属学报, 1993; 29: 187)
[23] Prakash T L, Tewari S N.In: Ramakrishnan P ed., Powder Metall Related High Temperature Materials. Zurich: Trans Tech Publications, 1985: 402
[24] Wu C F, Ma M X, Liu W J, Zhong M L, Zhang W M, Zhang H J.Acta Metall Sin, 2009; 45: 1013
[24] (吴朝锋, 马明星, 刘文今, 钟敏霖, 张伟明, 张红军. 金属学报, 2009; 45: 1013)
[25] John R, David F.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Champion: TMS, 2004: 381
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!