Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1191-1206    DOI: 10.11900/0412.1961.2015.00442
Current Issue | Archive | Adv Search |
RESEARCH PROGRESS IN A HIGH PERFORMANCE CAST & WROUGHT SUPERALLOY FOR TURBINE DISC APPLICATIONS
Yuefeng GU1(),Chuanyong CUI1,2(),Yong YUAN1,3,Zhihong ZHONG1,4
1 National Institute for Materials Science, Tsukuba, 305-0047, Japan
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710032
4 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009
Cite this article: 

Yuefeng GU,Chuanyong CUI,Yong YUAN,Zhihong ZHONG. RESEARCH PROGRESS IN A HIGH PERFORMANCE CAST & WROUGHT SUPERALLOY FOR TURBINE DISC APPLICATIONS. Acta Metall Sin, 2015, 51(10): 1191-1206.

Download:  HTML  PDF(15484KB) 
Export:  BibTeX | EndNote (RIS)      
Key words:  cast & wrought supralloy      TMW alloy      alloy design      microstructure control      deformation mechanism     
Fund: Supported by National Natural Science Foundation of China (Nos.51171179, 51271174, 51331005, 51401071 and 11332010)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00442     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1191

Parameter Decade Thrust- weight ratio Turbine inlet temperature / ℃ Turbine disc temperature / ℃ Disc alloy
1st generation aero-engine 1940~1950 2~4 825~1025 550 Heat-resistant steel
2st generation aero-engine 1950~1960 4~6 1025~1225 600 High-temperature alloy
3st generation aero-engine 1960~1980 7~8 1550~1700 650 Wrought superalloy
4st generation aero-engine 1980~date 9~10 1550~1700 700~750 Powder/fibre-reinforced wrought superalloy
5st generation aero-engine Future 15~20 1900~2050 780~950 -
Table 1  Temperature development of turbine inlet and disc alloy[1,2]
Fig.1  Macro-morphology of turbine disk (a) and relative temperature and stress distributions during service (b)[3]
Fig.2  History of improvement in temperature capability of superalloys for turbine disc[[4]
Fig.3  New concept for designing C&W TMW alloy[8~11]
Fig.4  Yield strength of intermetallics Ni3Al and Co3Ti as a function of temperature[13~15]
Fig.5  A partial phase diagram of Ni-Al-Co-Ti quaternary alloys at 750 and 1100 ℃[16]
Fig.6  Design of TMW disk alloys by an innovative concept[10]
Fig.7  Design method of TMW alloy[18]
Alloy Co Cr W Mo Ti Al Nb Ta Zr C B Ni
TMW 22.0~26.0 13.0~15.0 1.2 2.8 5.1~7.4 2.0~3.0 - - 0.03 0.02 0.02 Bal.
U720Li 15.0 16.0 1.3 3.0 5.0 2.5 - - 0.03 0.02 0.02 Bal.
ME3 20.0 13.1 1.9 3.8 3.6 3.5 1.1 2.3 0.05 0.04 0.03 Bal.
LSHR 21.0 13.0 4.3 2.7 3.5 3.5 1.5 1.6 0.05 0.03 0.03 Bal.
Alloy10 14.9 10.2 6.2 2.7 3.9 3.7 1.9 0.9 0.10 0.03 0.03 Bal.
RR1000 18.5 15.0 - 5.0 3.6 3.0 - 2.0 0.06 0.03 0.02 Bal.
Table 2.  Compositions of TMW alloy and some comparative alloys[[17]
Fig.8  Morphology (a) and time-temperature-transformation (TTT) curves (b) of h phase formed in TMW alloy with high Ti content[11]
Fig.9  Analysis of plate-shaped phase in TMW alloys with Ti content higher than 10% [21,22]
Fig.10  Comparison of atomic arrangement in close packed planes of γ’ and h structure[23]
Fig.11  Filtered HRTEM image showing the dislocation decomposition (a)[24] and stacking fault energy (SFE) as a function of Co content in γ matrix (b) of Ni-Co base superalloys[25] (Inset in Fig.11a shows the SAED pattern, b1 and b2 indicate the dislocations)
Fig.12  TMW alloy pancakes procedure produced by C&W process[26]
Fig.13  Relations between grain size and performance in U720Li alloy[27] (LCF—low cyclie fatigue)
Fig.14  Relationship between solution temperature and microstructure of TMW-4M3 alloy[28,29] (b, m—Zener parameter)
(a) effect of solution temperature on grain size (r) and volume fraction (fv) of γ’ phase
(b) relationship between radius of primary γ’ phase and grain size
Fig.15  Tensile strength of TMW-4M3 and comparative alloys at various temperatures[7,8] (UTS—ultimate tensile strength)
Alloy γ matrix Primary γ’ Secondary γ’ Tertiary γ’ Annealing twin density %
Mean size mm Size mm Volume fraction % Size mm Volume Fraction % Size nm Volume fraction % Size nm
4M3-1 8.7 2.5~16.3 16.9 0.4~2.5 30.0 60 ~2.1 ~10 8.3
4M3-2 10.6 3.2~30.1 14.5 0.6~2.5 31.5 70 ~3.0 ~10 8.5
U720Li 10.2 2.8~25.3 13.1 0.5~2.5 29.4 90 ~2.5 ~10 3.6
Table 3  Effect of solution temperature on the grain size and γ’ phase characteristics[30]
图16  TMW合金经不同温度拉伸变形后的微观组织[31]
Fig.17  Schematic drawing of antiphase boundary (APB) and stacking fault (SF) shearing mechanisms[32] (DE—increased interface energy per deformed unit area in system; fγ’III—volume fraction of tertiary γ’ precipitate; f c1 γ’III, f c2 γ’III—volume fraction of tertiary γ’ when temperatures are Tc1 and Tc2; Tc1, Tc2—temperature)
(a) γ’ precipitates sheared by APB, small solid circles and large circles denote tertiary and secondary γ’ precipitates,respectively
(b) γ’ precipitates sheared by SF
(c) DE corresponding to APB shearing and SF shearing mechanisms as a function of fγ’III
(d) DE corresponding to APB shearing and SF shearing mechanisms as a function of temperature
Fig.18  Variation of critical strain (ec) with strain rate and temperature (a), TEM image in a normal dynamic strain aging (DSA) (b) and inverse DSA (c) and SFs (d) observed in TMW alloy solution-treated at 1100 ℃ for 4 h followed by water quenching[33,34] (Inset in Fig.18c shows the SAED pattern)
Fig.19  Variation of stacking fault dislocation (a) and SF energy (b) with test temperature in TMW alloys[37]
Fig.20  Larson-Miller relationship of time and stress for TMW and comparative alloys at 0.2% creep strain[9,38]
Fig.21  Microstructures of U720Li (a~c) and TMW-4M3 (d~f) alloys during creep at 725 ℃, 630 MPa in primary (a, d), secondary (b, e) and tertiary (c, f) stages[38~40] (Inset in Fig.21e shows the SAED pattern)
Fig.22  Creep mechanism map of Ni-Co base alloy under different creep conditions[43]
Fig.23  Strain controlled low cycle fatigue life for U720Li and TMW alloys at 400 ℃ (a), 650 ℃ (b), 725 ℃ (c) and degree of hardening D[8,9,45] (d)
Fig.24  Deformation microstructures of TMW-4M3 alloy fatigued at 650 ℃ at Δet=0.8% (a, b) and Δet=1.2% (c, d)[45]
Fig.25  Fatigue crack growth behavior for U720Li and TMW alloys at 400 ℃ (a), 650 ℃ (b) and (c) 725 ℃ (c)[8,9,46,47] (ΔK—stress intensity factor range, da/dN—crack growth rate)
Fig.26  EBSD (a~c) and TEM (d~f) images of TMW-4M3 after solid solution treatment at 1100 ℃ (a, d), 1150 ℃ (b, e) and 1180 ℃ (c, f) for 4 h, air cooling (AC) and subsequently subjected to two aging treatments 650 ℃, 24 h, AC and 760 ℃, 16 h, AC[49] (Inset in Fig.26c shows the pole figure, inset in Fig.26d shows the primary γ’, insets in Figs.26e and f show the enlarged views; RD—rolling direction, ND—normal direction)
Fig.27  Contribution of each factor to the strength of TMW-4M3 alloys[49] (DHGB—grain boundary hardening, DHTB—annealing twin boundary hardening, DHg'I —primary γ’ hardening, DHg'II—secondary γ’ hardening, DHg'III—tertiary γ’ hardening, DHsol— solid solution hardening, DHNi—Vickers hardness of pure Ni single crystal (001))
[1] Guo J T. Materials Science and Engineering for Superalloy. Vol.3, Beijing: Science Press, 2010: 650 (郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2010: 650)
[2] Jiang H F. Gas Turbine Experiment Res, 2002; 15(4): 1 (江和甫. 燃气涡轮试验与研究, 2002; 15(4): 1)
[3] Reed R C. The Superalloys Fundaments and Application. Cambridge: Cambridge University Press, 2006: 259
[4] Gu Y F, Cui C Y, Harada H, Fukuda T, Ping D H, Mitsuhashi A, Kato K, Kobayashi T, Fujioka J. In: Reed R C, Green A K, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloy 2008, Pittsburgh: TMS, 2008: 53
[5] Cao W D. In: Green K A, Pollock T M, Harada H Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Pittsburgh: TMS, 2004: 91
[6] Reed R C, Jackson M, Na Y S. Metall Mater Trans, 1999; 30A: 521
[7] Gabb T P, Telesman J, Kantzos P T, O'Connor K. Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3. Washington: National Aeronautics and Space Administration,NASA/TM-2002-211796, 2002
[8] Gu Y F, Fukuda T, Cui C Y, Harada H, Mitsuhashi A, Yokokawa T, Fujioka J, Koizumi Y, Kobayashi T. Metall Mater Trans, 2009; 40A: 3047
[9] Yokokawa T, Gu Y F, Cui C Y, Koizumi Y, Fujioka J, Harada H, Fukuda T, Mitsuhashi A. JIM, 2010; 74: 221
[10] Gu Y F, Harada H, Cui C Y, Ping D H, Sato A, Fujioka J. Scr Mater, 2006; 55: 815
[11] Cui C Y, Gu Y F, Harada H, Sato A. Metall Mater Trans, 2005; 36A: 2921
[12] Guard R, Westbrook J. Trans Am Inst Mining Metall Eng, 1959; 215: 807
[13] Takasugi T, Takazawa M, Izumi O. J Mater Sci, 1990; 25: 4239
[14] Suzuki T, Oya Y, Ochiai S. Metall Trans, 1984; 15: 173
[15] Aoki K, Wang X M, Memezawa A, Masumoto T. Mater Sci Eng, 1994; A179: 390
[16] Cui C Y, Gu Y F, Ping D H, Harada H. Intermetallics, 2008; 16: 910
[17] Guo J T. Materials Science and Engineering for Superalloy. Vol.2, Beijing: Science Press, 2010: 663 (郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2010: 663)
[18] Cui C Y, Gu Y F, Harada H, Ping D H, Sato A. Metall Mater Trans, 2006; 37A: 3183
[19] Cui C Y, Gu Y F, Ping D H, Harada H, Fukuda T. Mater Sci Eng, 2008; A485: 651
[20] Cui C Y, Gu Y F, Ping D H, Harada H. Metall Mater Trans, 2009; 40A: 282
[21] Ping D H, Cui C Y, Gu Y F, Harada H. Ultramicroscopy, 2007; 107: 791
[22] Cui C Y, Gu Y F, Ping D H, Fukuda T, Harada H. Mater Trans, 2008; 49: 424
[23] Xu L, Cui C Y, Sun X F. Mater Sci Eng, 2011; A528: 7851
[24] Yuan Y, Gu Y F, Cui C Y, Osada T, Zhong Z H, Tetsui T, Yokokawa T, Harada H. J Mater Res, 2011; 26: 2833
[25] Yuan Y, Gu Y F, Cui C Y, Osada T, Yokokawa T, Harada H. Adv Eng Mater, 2011; 13: 296
[26] Fukuda T, Mitsuhashi A, Kato K, Gu Y F, Harada H. J Gas Turbine Soc Jpn, 2007; 35(3): 132
[27] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[28] Osada T, Gu Y F, Yokokawa T, Harada H. JIM, 2010; 74: 279
[29] Osada T, Gu Y F, Yuan Y, Yokokawa T, Harada H. JIM, 2010; 74: 688
[30] Zhong Z H, Gu Y F, Yuan Y, Osada T, Cui C Y, Yokokawa T, Tetsui T, Harada H. Metall Mater Trans, 2012; 43A: 1017
[31] Yuan Y, Gu Y F, Zhong Z H, Osada T, Yokokawa T, Harada H. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Telesman J eds., Superalloy 2012, Pittsburgh: TMS, 2012: 35
[32] Yuan Y, Gu Y F, Zhong Z H, Osada T, Yokokawa T, Harada H. Scr Mater, 2012; 67: 137
[33] Cui C Y, Gu Y F, Yuan Y, Harada H. Scr Mater, 2011; 64: 502
[34] Cui C Y, Jin T, Sun X F. J Mater Sci, 2011; 46: 5546
[35] Tian C G, Cui C Y, Xu L, Gu Y F, Sun X F. J Mater Sci Technol, 2013; 29: 873
[36] Cai Y L, Tian C G, Fu S H, Han G M, Cui C Y, Zhang Q C. Mater Sci Eng, 2015; A638: 314
[37] Xu Y J, Qi D Q, Du K, Cui C Y, Ye H Q. Scr Mater, 2014; 87: 37
[38] Gu Y F, Cui C Y, Ping D H, Harada H, Fukuda T, Fujioka J. Mater Sci Eng, 2009; A510-511: 250
[39] Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T, Harada H. Mater Sci Eng, 2011; A528: 5106
[40] Yuan Y, Gu Y F, Zhong Z H, Osada T, Cui C Y, Tetsui T, Yokokawa T, Harada H. J Microscopy, 2012; 248: 34
[41] Tian C G, Han G M, Cui C Y, Sun X F. Mater Des, 2014; 64: 316
[42] Tian C G, Cui C Y, Sun X F. Metall Mater Trans, 2015; 46A: 4601
[43] Xu L, Chu Z K, Cui C Y, Gu Y F, Sun X F. Acta Metall Sin, 2013;49: 863 (徐 玲, 储昭贶, 崔传勇, 谷月峰, 孙晓峰. 金属学报, 2013; 49: 863)
[44] Zhang Z J, Zhang P, Li L L, Zhang Z F. Acta Mater, 2012; 60: 3113
[45] Zhong Z H, Gu Y F, Yuan Y, Yokokawa T, Harada H. Mater Sci Eng, 2012; A552: 434
[46] Zhong Z H, Gu Y F, Yuan Y, Cui C Y, Yokokawa T, Harada H. Mater Sci Eng, 2012; A552: 464
[47] Zhong Z H, Gu Y F, Yuan Y, Cui C Y, Yokokawa T, Harada H. J Mater Sci, 2011; 46: 7573
[48] Osada T, Nagashima N, Gu Y F, Yuan Y, Yokokawa T, Harada H. Scr Mater, 2011; 64: 892
[49] Osada T, Gu Y F, Nagashima N, Yuan Y, Yokokawa T, Harada H. Acta Mater, 2013; 61: 1820
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[8] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[10] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
[11] YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 393-402.
[12] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[13] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[15] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
No Suggested Reading articles found!