Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 393-402    DOI: 10.11900/0412.1961.2020.00433
Overview Current Issue | Archive | Adv Search |
Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys
YU Qian(), CHEN Yujie, FANG Yan
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Cite this article: 

YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys. Acta Metall Sin, 2021, 57(4): 393-402.

Download:  HTML  PDF(1739KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-entropy alloys (HEAs) or multiprincipal-element alloys have exceptional properties those may be better than the properties of conventional alloys and exhibit different deformation mechanisms. However, some issues pertaining to what may make HEAs distinct from the conventional alloys remain to be resolved. Many studies have found that heterogeneity in chemical distribution due to unique atomic features may be common in HEAs. Therefore, the relationship between the structure and properties cannot be explained completely by the traditional solid solution strengthening mechanism. In this short review, classified by their crystal structures, such as face-centered-cubic, body-centered-cubic, and dual-phase, studies on element distribution in HEAs, including concentration wave and short-range order, are summarized. The influence of heterogeneity in chemical distribution on dislocation behaviors and mechanical properties is described. Further, a brief perspective of the research directions for element distribution is proposed.

Key words:  high entropy alloy      concentration fluctuation      short-range order      deformation mechanism and mechanical property     
Received:  30 October 2020     
ZTFLH:  TG131  
Fund: National Natural Science Foundation of China(51671168、51871197)
About author:  YU Qian, professor, Tel: (0571)87953852, E-mail: 0014030@zju.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00433     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/393

Fig. 1  The model of traditional solid solution and the inhomogeneity of element distribution in high-entropy alloys (HEAs)
Fig.2  Atomic scale element distribution taken from EDS in CrCoNi-3W (a) and Ni-3W (b) alloys
Fig.3  Dislocation morphologies in different alloys
Fig.4  Heterogeneity in chemical distribution and corresponding dislocation behaviors in bcc HEAs
1 Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
2 Labusch R. A statistical theory of solid solution hardening [J]. Phys. Stat. Sol., 1970, 41B: 659
3 Nabarro F R N. The theory of solution hardening [J]. Philos. Mag., 1977, 35: 613
4 Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
5 Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe-Mn-Al-C alloys [J]. J. Mater. Sci., 2008, 43: 6214
6 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
7 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
8 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
9 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
10 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
11 Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
12 Couzinié J P, Dirras G, Perrière L, et al. Microstructure of a near-equimolar refractory high-entropy alloy [J]. Mater. Lett., 2014, 126: 285
13 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
14 Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
15 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
16 Grässel O, Frommeyer G, Derder C, et al. Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels [J]. J. Phys. IV Coll., 1997, 7: C5-383
17 Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
18 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
19 Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc Natl Acad Sci U S A, 2018, 115: 8919
20 Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
21 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
22 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
23 Luan H W, Shao Y, Li J F, et al. Phase stabilities of high entropy alloys [J]. Scr. Mater., 2020, 179: 40
24 Gyorffy B L, Stocks G M. Concentration waves and Fermi surfaces in random metallic alloys [J]. Phys. Rev. Lett., 1983, 50: 374
25 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
26 Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
27 Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
28 Laurent-Brocq M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy [J]. Acta Mater., 2015, 88: 355
29 Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39
30 Otto F, Dlouhý A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
31 Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
32 Chen Y J, Fang Y, Fu X Q, et al. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73: 101
33 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
34 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
35 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
36 Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
37 Ming K S, Bi X F, Wang J. Segregation of Mo atoms into stacking faults in CrFeCoNiMo alloy [J]. Philos. Mag., 2019, 99: 1014
38 Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
39 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
40 Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
41 Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
42 Xu S Z, Hwang E, Jian W R, et al. Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys [J]. Intermetallics, 2020, 124: 106844
43 Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
44 Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
45 Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys [J]. Acta Mater., 2020, 182: 144
46 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
47 Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms [J]. Acta Mater., 2018, 142: 131
48 Wei S L, Kim S J, Kang J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility [J]. Nat. Mater., 2020, 19: 1175
49 Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
50 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
51 Whitfield T E, Pickering E J, Talbot C E, et al. Observation of a refractory metal matrix containing Zr-Ti-rich precipitates in a Mo0.5NbTa0.5TiZr high entropy alloy [J]. Scr. Mater., 2020, 180: 71
52 Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
53 Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 [J]. Scr. Mater., 2016, 121: 1
54 Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
55 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
56 Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
57 Chen S J, Oh H S, Gludovatz B, et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2020, 11: 826
58 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
59 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
60 He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
61 Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
62 Gao N, Lu D H, Zhao Y Y, et al. Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation [J]. J. Alloys Compd., 2019, 792: 1028
63 Cheng H, Wang H Y, Xie Y C, et al. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: Microstructure and mechanical properties [J]. Mater. Sci. Technol., 2017, 33: 2032
64 Stepanov N D, Yurchenko N Y, Tikhonovsky M A, et al. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys [J]. J. Alloys Compd., 2016, 687: 59
65 Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
[1] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[2] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[3] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[4] LIU Yi, TU Jian, YANG Weihua, YIN Ruisen, TAN Li, HUANG Can, ZHOU Zhiming. Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy[J]. 金属学报, 2020, 56(12): 1569-1580.
[5] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[6] Chuang DONG, Dandan DONG, Qing WANG. Chemical Units in Solid Solutions andAlloy Composition Design[J]. 金属学报, 2018, 54(2): 293-300.
[7] ZHANG Song, WU Chenliang, WANG Chao, YI Junzhen, ZHANG Chunhua. SYNTHESIS OF LASER HIGH ENTROPY ALLOYING COATING ON THE SURFACE OF SINGLE-ELEMENT Fe BASE ALLOY[J]. 金属学报, 2014, 50(5): 555-560.
[8] WANG Wencai;CHEN Yu Department of Physics; Peking University. SHORT-RANGE ORDER STRUCTURES OF Fe-Ge AMORPHOUS THIN FILMS[J]. 金属学报, 1989, 25(1): 111-116.
No Suggested Reading articles found!