|
|
Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys |
YU Qian( ), CHEN Yujie, FANG Yan |
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
Cite this article:
YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys. Acta Metall Sin, 2021, 57(4): 393-402.
|
Abstract High-entropy alloys (HEAs) or multiprincipal-element alloys have exceptional properties those may be better than the properties of conventional alloys and exhibit different deformation mechanisms. However, some issues pertaining to what may make HEAs distinct from the conventional alloys remain to be resolved. Many studies have found that heterogeneity in chemical distribution due to unique atomic features may be common in HEAs. Therefore, the relationship between the structure and properties cannot be explained completely by the traditional solid solution strengthening mechanism. In this short review, classified by their crystal structures, such as face-centered-cubic, body-centered-cubic, and dual-phase, studies on element distribution in HEAs, including concentration wave and short-range order, are summarized. The influence of heterogeneity in chemical distribution on dislocation behaviors and mechanical properties is described. Further, a brief perspective of the research directions for element distribution is proposed.
|
Received: 30 October 2020
|
|
Fund: National Natural Science Foundation of China(51671168、51871197) |
About author: YU Qian, professor, Tel: (0571)87953852, E-mail: 0014030@zju.edu.cn
|
1 |
Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
|
2 |
Labusch R. A statistical theory of solid solution hardening [J]. Phys. Stat. Sol., 1970, 41B: 659
|
3 |
Nabarro F R N. The theory of solution hardening [J]. Philos. Mag., 1977, 35: 613
|
4 |
Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
|
5 |
Tian X, Li H, Zhang Y S. Effect of Al content on stacking fault energy in austenitic Fe-Mn-Al-C alloys [J]. J. Mater. Sci., 2008, 43: 6214
|
6 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
7 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
8 |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
|
9 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
|
10 |
Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
|
11 |
Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
|
12 |
Couzinié J P, Dirras G, Perrière L, et al. Microstructure of a near-equimolar refractory high-entropy alloy [J]. Mater. Lett., 2014, 126: 285
|
13 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
|
14 |
Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
|
15 |
Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
|
16 |
Grässel O, Frommeyer G, Derder C, et al. Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels [J]. J. Phys. IV Coll., 1997, 7: C5-383
|
17 |
Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
|
18 |
Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
|
19 |
Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proc Natl Acad Sci U S A, 2018, 115: 8919
|
20 |
Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy [J]. Phys. Rev. Lett., 2017, 118: 205501
|
21 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
|
22 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
|
23 |
Luan H W, Shao Y, Li J F, et al. Phase stabilities of high entropy alloys [J]. Scr. Mater., 2020, 179: 40
|
24 |
Gyorffy B L, Stocks G M. Concentration waves and Fermi surfaces in random metallic alloys [J]. Phys. Rev. Lett., 1983, 50: 374
|
25 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
|
26 |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
|
27 |
Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
|
28 |
Laurent-Brocq M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy [J]. Acta Mater., 2015, 88: 355
|
29 |
Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39
|
30 |
Otto F, Dlouhý A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures [J]. Acta Mater., 2016, 112: 40
|
31 |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
|
32 |
Chen Y J, Fang Y, Fu X Q, et al. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73: 101
|
33 |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
|
34 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
|
35 |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
|
36 |
Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
|
37 |
Ming K S, Bi X F, Wang J. Segregation of Mo atoms into stacking faults in CrFeCoNiMo alloy [J]. Philos. Mag., 2019, 99: 1014
|
38 |
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
|
39 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
|
40 |
Yin S, Ding J, Asta M, et al. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 110
|
41 |
Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
|
42 |
Xu S Z, Hwang E, Jian W R, et al. Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys [J]. Intermetallics, 2020, 124: 106844
|
43 |
Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
|
44 |
Smith L T W, Su Y Q, Xu S Z, et al. The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy [J]. Int. J. Plast., 2020, 134: 102850
|
45 |
Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys [J]. Acta Mater., 2020, 182: 144
|
46 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
|
47 |
Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms [J]. Acta Mater., 2018, 142: 131
|
48 |
Wei S L, Kim S J, Kang J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility [J]. Nat. Mater., 2020, 19: 1175
|
49 |
Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
|
50 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
|
51 |
Whitfield T E, Pickering E J, Talbot C E, et al. Observation of a refractory metal matrix containing Zr-Ti-rich precipitates in a Mo0.5NbTa0.5TiZr high entropy alloy [J]. Scr. Mater., 2020, 180: 71
|
52 |
Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
|
53 |
Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 [J]. Scr. Mater., 2016, 121: 1
|
54 |
Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
|
55 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
56 |
Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
|
57 |
Chen S J, Oh H S, Gludovatz B, et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2020, 11: 826
|
58 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
|
59 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
60 |
He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
|
61 |
Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
|
62 |
Gao N, Lu D H, Zhao Y Y, et al. Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation [J]. J. Alloys Compd., 2019, 792: 1028
|
63 |
Cheng H, Wang H Y, Xie Y C, et al. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: Microstructure and mechanical properties [J]. Mater. Sci. Technol., 2017, 33: 2032
|
64 |
Stepanov N D, Yurchenko N Y, Tikhonovsky M A, et al. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys [J]. J. Alloys Compd., 2016, 687: 59
|
65 |
Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|