Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1207-1218    DOI: 10.11900/0412.1961.2015.00419
Current Issue | Archive | Adv Search |
EFFECT OF EXTENT OF HOMOGENIZATION ON THE HOT DEFORMATION RECRYSTALLIZATION OF SUPERALLOY INGOT IN COGGING PROCESS
Jianxin DONG(),Linhan LI,Haoyu LI,Maicang ZHANG,Zhihao YAO
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Jianxin DONG,Linhan LI,Haoyu LI,Maicang ZHANG,Zhihao YAO. EFFECT OF EXTENT OF HOMOGENIZATION ON THE HOT DEFORMATION RECRYSTALLIZATION OF SUPERALLOY INGOT IN COGGING PROCESS. Acta Metall Sin, 2015, 51(10): 1207-1218.

Download:  HTML  PDF(14184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The elimination of the segregation improves the thermo plasticity of superalloy ingot during the homogenization process, but coarser grain structure and high-temperature oxidation caused in further homogenization have an adverse impact on the thermo plasticity. The inheritance of coarse grain structure in the followed hot working process increases the tendency of cogging crack and makes the grain refining harder, leading to a lower yield of the final workpiece. The microstructure characteristics and their hot deformation behaviors of GH4740H, GH4738, GH3625 and 690 alloys under different homogenizations were investigated by means of microstructure analysis methods and crack propagation testing. The experimental results show that the reasonable homogenization processing needs to take into account the segregation elimination arising thermo plasticity addition, more to consider grain coarsing and severe oxidation leading to decrease plasticity. Based on the residue dendrites can provide more recrystalazation nucleation sites, the partial homogenization possessing probably exists rationality. This research work provides an exploratory study for the improvement of the homogenization-cogging process of superalloy.

Key words:  superalloy      homogenization      cogging      dendrite     
Fund: Supported by National Natural Science Foundation of China (No.51571012)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00419     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1207

Alloy C Cr Co Mo Nb Ti Al Fe Mn Zr Ni
GH4740H 0.034 25.08 20.08 - 1.62 1.66 1.404 0.06 - - Bal.
GH4738 0.045 19.35 13.52 4.92 - 3.12 1.430 - - 0.05 Bal.
GH3625 0.010 21.43 - 8.80 3.49 0.05 0.200 0.20 0.04 - Bal.
690 0.018 29.69 0.01 - 0.01 0.35 0.090 9.25 0.05 - Bal.
Table 1  Chemical compositions of ingots
Fig.1  Microstructure of dendrite at R/2 of as-cast 690 alloy ingot
Fig.2  Changes of segregation index and grain size with time of 690 alloy during homogenization treatment
Fig.3  Crack growth rate curves of 690 alloy under different homogenizations (da/dN—crack growth rate, DK—intensity factor range)
Fig.4  Fatigue fracture morphologies of 690 alloy under homogenization at 1150 ℃ for 60 h (a), 1180 ℃ for 30 h (b, c), and 1240 ℃ for 30 h (d)
Fig.5  Microstructure of dendrite at R/2 of as-cast GH4740H ingot
Fig.6  Cross-sectional microstructures of GH4740H alloy under homogenization at 1110 ℃ for 8 h (a) and 24 h (b)
Fig.7  Cross-sectional SEM image (a) and EDS mapping analysis of rectangular area in Fig.7a (b~d) of GH4740H alloy under homogenization at 1110 ℃ for 48 h
Fig.8  Cross-sectional microstructures of GH4740H alloy under homogenization at 1170 ℃ for 8 h (a) and 48 h (b)
Fig.9  Thicknesses of oxidized area of GH4740H alloy under homogenization at 1170 ℃ for different times
Fig.10  Microstructures of as-cast GH3625 alloy (a), and soaking at 1250 ℃ for 5 min (b), hot compressed at 1100 ℃, 0.01 s-1, 50% (c)
Fig.11  Segregation index of Cr, Mo and Nb in GH3625 alloy at different states
Fig.12  SEM image (a) and EDS mapping analysis of Cr, Mo and Nb distributions (b~d) of hot compressed GH3625 alloy
Fig.13  Microstructures of as-cast GH4738 alloy (a) and under homogenization at 1150 ℃ for 12 h (b), 24 h (c) and 50 h (d)
Fig.14  True stress-true strain curves of hot compressed (1150 ℃, 0.1 s-1, 30%) GH4738 alloy under different homogenizations
Fig.15  Metallographies of the center area samples after hot compression (1150 ℃, 0.1 s-1, 30%) of as-cast GH4738 alloy (a) and homogenized at 1150 ℃ for 12 h (b), 24 h (c) and 50 h (d)
Fig.16  Recrystallization positions of as-cast GH4738 alloy after hot compression in small deformation zone (a) and large deformation zone (b) (A, B, C show recrystallization site near carbide particles)
Fig.17  FESEM images of the center area of as-cast GH4738 alloy (a) and homogenized at 1150 ℃ for 12 h after hot compression (1150 ℃, 0.1 s-1, 30%) (b)
Fig.18  Microstructure of the center area of as-cast GH4738 alloy after hot compression
Area As-cast Homogenized 3 h Homogenized 12 h
Center 1.852 1.677 1.193
Edge 2.079 1.864 1.323
Table 2  Segregation index of Ti in different status
Fig.19  Schematics of microstructure evolution of as-homogenized (a) and as-partially homogenized (b) alloy before and after hot deformation
[1] Semiatin S L, Kramb R C, Turner R E, Zhang F, Antony M M. Scr Mater, 2004; 51: 491
[2] Malara C, Radavich J. In: Loria E A ed., Superalloys 718, 625, 706 and Derivatives 2005, Warrendale: TMS, 2005: 25
[3] Ju Q, Ma H P, Fu X D, Wang M. Rare Met Mater Eng, 2012; 41: 310 (鞠 泉, 马惠萍, 符鑫丹, 王 明. 稀有金属材料与工程, 2012; 41: 310)
[4] Semiatin S L, Weaver D S, Fagin P N, Glavicic M G, Goetz R L, Frey N D, Kramb R C, Antony M M. Metall Mater Trans, 2005; 35A: 679
[5] Zhao Y X, Fu S H, Zhang S W, Tang X, Liu N, Zhang G Q. In: Ott E A, Groh J R, Banik A, Dempster I, Gabb T P, Helmink R, Liu X B, Mitchell A, Sjoberg G P, Wusatowska-Sarnekeds A eds., Superalloys 718 and Derivatives 2010, Warrendale: TMS, 2010: 271
[6] Semiatin S L, Weaver D S, Goetz R L, Thomas J P, Turner T J. Mater Sci Forum, 2007; 550: 129
[7] Kramb R C, Antony M M, Semiatin S L. Scr Mater, 2006; 54: 1645
[8] Kermanpur A, Wang W, Lee P D, McLean M. Mater Sci Technol, 2003; 19: 859
[9] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011; 47: 1581 (姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)
[10] Li L H, Dong J X, Zhang M C, Yao Z H. Acta Metall Sin, 2014; 50: 821 (李林翰, 董建新, 张麦仓, 姚志浩. 金属学报, 2014; 50: 821)
[11] Wen D X, Lin Y C, Li H B, Chen X M, Deng J, Li L T. Mater Sci Eng, 2014; A591:183
[12] Yao Z H, Zhang M C, Dong J X. Metall Mater Trans, 2013; 44A: 3084
[13] Li H Y, Kong Y H, Chen G S, Xie L X, Zhu S G, Sheng X. Mater Sci Eng, 2014; A582: 368
[14] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289 (谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)
[15] Kong Y H, Liu R Y, Chen G S, Xie L X, Zhu S G. J Mater Eng Perform, 2013; 22: 1372
[16] Shi C X, Zhong Z Y. Acta Metall Sin, 2010; 46: 1281 (师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[17] Wang X H, Ward R M, Jacobs M H, Barratt M D. Metall Mater Trans, 2007; 39A: 449
[18] Miao Z J, Shan A D, Wu Y B, Lu J, Xu W L, Song H W. Trans Nonferrous Met Soc China, 2011; 21: 1009
[19] Tin S, Lee P D, Kermanpur A, Rist M, McLean M. Metall Mater Trans, 2005; 36A: 2493
[20] Yeom J T, Lee C S, Kima J H, Park N K. Mater Sci Eng, 2007; A449-451: 722
[21] Dandre C A, Roberts S M, Evans R W, Reed R C. Mater Sci Technol, 2000; 16: 14
[22] Wang P, Dong J X. Rare Met Mater Eng, 2014; 43: 2502 (王 璞, 董建新. 稀有金属材料与工程, 2014; 43: 2502)
[23] Luo K J, Zhang M C, Wang B S, Dong J X. Rare Met Mater Eng, 2011; 40: 605 (罗坤杰, 张麦仓, 王宝顺, 董建新. 稀有金属材料与工程, 2011; 40: 605)
[24] High Temperature Alloys Laboratory,Beijing Institute of Iron Steel.GH132 Alloy. Beijing: National Defence Industry Press, 1980: 26 (北京钢铁学院高温合金教研室编. GH132合金.北京: 国防工业出版社, 1980: 26)
[25] Wang J, Wu Y, Dong J X, Zhang M C, Xie X S, Xu F H. Rare Met Mater Eng, 2013; 42: 1908 (王 珏, 吴 赟, 董建新, 张麦仓, 谢锡善, 徐芳泓. 稀有金属材料与工程, 2013; 42: 1908)
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[8] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[11] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[12] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[13] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!