|
|
Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging |
ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong( ) |
School of Materials Science and Engineering, Central South University, Changsha 410083, China |
|
Cite this article:
ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging. Acta Metall Sin, 2020, 56(5): 723-735.
|
Abstract Multi-directional forging (MDF) is an effective way to fabricate wrought magnesium alloy with ultrafine grains and random texture. Therefore, microstructure evolution and dynamic recrystallization (DRX) of magnesium alloys during MDF process have been widely investigated. Mg-Zn-RE alloys containing long-period stacking ordered (LPSO) phase have received considerable attention owing to their excellent mechanical properties. In addition, LPSO phase has great effects on the deformation mechanism and DRX behavior. Still, limited comprehensive studies can be found in the literature dealing with the microstructure evolution, deformation mechanism and DRX of magnesium alloys containing LPSO phase in MDF deformation. In this work, MDF was applied to a Mg-5.6Gd-0.8Zn (mass fraction, %) alloy containing LPSO phase. Microstructure characteristics, deformation mechanism and DRX behavior of the material in different passes were examined. Results show that there are several stages of the microstructure evolution. Twinning was activated only in a small part of grains in the early stage of deformation. As the forging direction changes, the number of twinned grains and the volume fraction of DRX grains increased. A mixed structure with coarse deformed grain and DRX grains was sustained till last forging pass, and the average size of DRX grains is about 4 μm with a random orientation. {} tensile twinning is the main deformation mechanism and the selection of twin variants was dominated by the Schmid law. Change in forging direction is beneficial to twinning stimulation in grains of different orientations. Kink and slipping deformation could effectively accommodate the plastic strain where the operation of twinning was hindered. Kink deformation resulted in lattice rotation predominately about the <> axis. DRX grains nucleated at different places during the forging process. Not only the grain boundaries and the twinned region, but also kink boundaries can induce the nucleation of DRX grains. Eventually, the twinned regions were transformed to a strip-like recrystallization structure. Under the combined influence of twinning and kinking, as well as DRX induced by twins, kink bands and grain boundaries, the initial coarse grains were significantly refined.
|
Received: 05 September 2019
|
|
Fund: National Natural Science Foundation of China(51874367);National Natural Science Foundation of China(51574291) |
1 |
Ding W J. Magnesium Alloy Science and Technology [M]. Beijing: Science Press, 2007: 24
|
|
丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 24
|
2 |
Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminum alloys [J]. J. Light Met., 2001, 1: 61
|
3 |
Zhang J H, Leng Z, Liu S J, et al. Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults [J]. J. Alloys Compd., 2011, 509: 7717
|
4 |
Polmear I J. Magnesium alloys and applications [J]. Mater. Sci. Technol., 1994, 10: 1
|
5 |
Zeng R C, Ke W, Xu Y B, et al. Recent development and application of magnesium alloys [J]. Acta Metall. Sin., 2001, 37: 673
|
|
曾荣昌, 柯 伟, 徐永波等. Mg合金的最新发展及应用前景 [J]. 金属学报, 2001, 37: 673
|
6 |
Miura H, Maruoka T, Yang X, et al. Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy [J]. Scr. Mater., 2012, 66: 49
|
7 |
Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans., 2001, 42: 1172
|
8 |
Li Y X, Zhu G Z, Qiu D, et al. The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys [J]. J. Alloys Compd., 2016, 660: 252
|
9 |
Zhu J, Chen J B, Liu T, et al. High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology [J]. Mater. Sci. Eng., 2017, A679: 476
|
10 |
Shao J B, Chen Z Y, Chen T, et al. Texture evolution, deformation mechanism and mechanical properties of the hot rolled Mg-Gd-Y-Zn-Zr alloy containing LPSO phase [J]. Mater. Sci. Eng., 2018, A731: 479
|
11 |
Xie G M, Ma Z Y, Xue P, et al. Effects of tool rotation rates on superplastic deformation behavior of friction stir processed Mg-Zn-Y-Zr alloy [J]. Acta Metall. Sin., 2018, 54: 1745
|
|
谢广明, 马宗义, 薛 鹏等. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响 [J]. 金属学报, 2018, 54: 1745
|
12 |
Li K, Chen Z Y, Chen T, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases [J]. J. Alloys Compd., 2019, 792: 894
doi: 10.1016/j.jallcom.2019.04.036
|
13 |
Matsuda M, Ando S, Nishida M, et al. Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase [J]. Mater. Trans., 2005, 46: 361
|
14 |
Matsuda M, Ii S, Kawamura Y, et al. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy [J]. Mater. Sci. Eng., 2004, A386: 447
|
15 |
Yamasaki M, Hagihara K, Inoue S I, et al. Crystallographic classification of kink bands in an extruded Mg-Zn-Y alloy using intragranular misorientation axis analysis [J]. Acta Mater., 2013, 61: 2065
|
16 |
Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Mater., 2010, 58: 4760
|
17 |
Zhou X J, Liu C M, Gao Y H, et al. Evolution of LPSO phases and their effect on dynamic recrystallization in a Mg-Gd-Y-Zn-Zr alloy [J]. Metall. Mater. Trans., 2017, 48A: 3060
doi: 10.3390/ma11112092
pmid: 30366432
|
18 |
Zhang D X, Tan Z, Huo Q H, et al. Dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloy with different morphologies and distributions of LPSO phases [J]. Mater. Sci. Eng., 2018, A715: 389
|
19 |
Miura H, Yu G, Yang X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties[J]. Mater. Sci. Eng., 2011, A528: 6981
|
20 |
Wang B Z, Liu C M, Gao Y H, et al. Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment [J]. Mater. Sci. Eng., 2017, A702: 22
|
21 |
Wu Y Z, Yan H G, Chen J H, et al. Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates [J]. Mater. Sci. Eng., 2012, A556: 164
|
22 |
Mehrabi A, Mahmudi R, Miura H. Superplasticity in a multi-directionally forged Mg-Li-Zn alloy [J]. Mater. Sci. Eng., 2019, A765: 138274
|
23 |
Deng L P, Cui K X, Wang B S, et al. Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature [J]. Acta Metall. Sin., 2019, 55: 976
|
|
邓丽萍, 崔凯旋, 汪炳叔等. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究 [J]. 金属学报, 2019, 55: 976
|
24 |
Matsuda M, Ii S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy [J]. Mater. Sci. Eng., 2005, A393: 269
|
25 |
Yamasaki M, Sasaki M, Nishijima M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature [J]. Acta Mater., 2007, 55: 6798
doi: 10.1016/j.actamat.2007.08.033
|
26 |
Xiao H C, Jiang S N, Tang B, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy [J]. Mater. Sci. Eng., 2015, A628: 311
|
27 |
Guan D K, Rainforth W M, Ma L, et al. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy [J]. Acta Mater., 2017, 126: 132
|
28 |
Liu W, Zhang J S, Wei L Y, et al. Extensive dynamic recrystallized grains at kink boundary of 14H LPSO phase in extruded Mg92Gd3Zn1Li4 alloy [J]. Mater. Sci. Eng., 2017, A681: 97
|
29 |
Wu J, Ikeda K I, Shi Q, et al. Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy [J]. Mater. Charact., 2019, 148: 233
|
30 |
Yu Y N. Metallurgical Principle [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 931
|
|
余永宁. 金属学原理 [M]. 第2版. 北京: 冶金工业出版社, 2013: 931
|
31 |
Chapuis A, Xin Y C, Zhou X J, et al. {101¯2} twin variants selection mechanisms during twinning, re-twinning and detwinning [J]. Mater. Sci. Eng., 2014 ,A612: 431
|
32 |
Stanford N, Barnett M R. Effect of particles on the formation of deformation twins in a magnesium-based alloy [J]. Mater. Sci. Eng., 2009, A516: 226
|
33 |
Hong S G, Park S H, Lee C S. Role of {101¯2} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy [J]. Acta Mater., 2010, 58: 5873
|
34 |
Guo C F, Xin R L, Zheng X, et al. Influence of observation plane on twin variant identification in magnesium via trace and misorientation analysis [J]. Mater. Sci. Eng., 2014, A618: 558
|
35 |
Barnett M R. A Taylor model based description of the proof stress of magnesium AZ31 during hot working [J]. Metall. Mater. Trans., 2003, 34A: 1799
|
36 |
Chun Y B, Davies C H J. Investigation of prism <a> slip in warm-rolled AZ31 alloy [J]. Metall. Mater. Trans., 2011, 42A: 4113
|
37 |
Wang L, Sabisch J, Lilleodden E T. Kink formation and concomitant twin nucleation in Mg-Y [J]. Scr. Mater., 2016, 111: 68
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|