Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 935-942    DOI: 10.11900/0412.1961.2014.00648
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718
Kan SONG,Kai YU,Xin LIN(),Jing CHEN,Haiou YANG,Weidong HUANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

Kan SONG,Kai YU,Xin LIN,Jing CHEN,Haiou YANG,Weidong HUANG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718. Acta Metall Sin, 2015, 51(8): 935-942.

Download:  HTML  PDF(6183KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of additive manufacturing technology of metal, laser solid forming (LSF) has become an important fabricating method for high performance and complex Inconel 718 alloy components. However, there still exist a certain microsegregation and a large uneven distribution of residual stress in as-deposited Inconel 718 alloy due to rapid heating and cooling in LSF. Heat treatment is a necessary method for further improving the microstructure and mechanical properties. In this work, the microstructure and mechanical properties of LSFed Inconel 718 alloy heat treated with high temperature solution, d phase aging and double aging treatment was investigated, the dislocation configuration of heat treated LSFed Inconel 718 alloy was characterized. It is found that the recrystallization occurs after the heat treatment, which leads to the transition from the columnar grain in the as-deposited to the equiaxed grain. Laves phase is dissolved completely after the heat treatment, and the needle d phase and the g phase precipitate along the grain boundary and in the g phase matrix, respectively. The strength, elongation and reduction of area of the heat treated Inconel 718 alloy satisfy the wrought standards. There are two kinds of interactions between the dislocation and the g phase, the shearing mechanism and the Orowan bypass mechanism, which play the dominant role corresponding to the lower and the higher distribution density of g phase, respectively. Additionally, the dislocations pile up at the d phase owing to the larger size of the d phase in the heat treated Inconel 718 alloy compared with that in the wrought. The dislocation glide can be also hindered by carbide due to the pinning and drag effect.

Key words:  laser solid forming (LSF)      Inconel 718      microstructure      mechanical property      dislocation configuration     
Fund: Supported by National Natural Science Foundation of China (Nos.51323008, 51105311 and 51271213), National Basic Research Program of China (No.2011CB610402), National High Technology Research and Development Program of China (No.2013AA031103), China Postdoctoral Science Foundation (No.2015M572597) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20116102110016)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00648     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/935

Fig.1  Microstructures and EDS analysis of as-deposited laser solid forming (LSF) Inconel 718 alloy
Fig.2  Microstructures of LSF Inconel 718 alloy after high temperature solution treatment (ST) (a), followed by d aging treatment (AT) (b) and double aging treatment (DAT) (c)
Fig.3  XRD spectra of LSF Inconel 718 alloy before and after heat treatment
Material condition sb / MPa ss / MPa d / % y / %
LSF 931 785 19.82 26.88
LSF+ST 1182 986 18.86 25.56
LSF+ST+d AT 1290 1089 17.88 25.02
LSF+ST+d AT+DAT 1351 1184 17.20 23.70
Wrought standard (Q/3B548-1996) 1340 1100 12.00 15.00
Table 1  Tensile properties of LSF Inconel 718 alloy at room temperature
Fig.4  Tensile fracture morphologies of LSF Inconel 718 alloy after heat treatment at low (a) and high (b) magnification
Fig.5  Bright-field (a), dark-field (b) TEM images and SAED pattern (c) of gphase in LSF Inconel 718 alloy after heat treatment
Fig.6  Bright-field TEM image (a) and SAED pattern (b) of d phase in LSF Inconel 718 alloy after heat treatment
Fig.7  Bright-field TEM image (a) and EDS analysis (b) of carbide in LSF Inconel 718 alloy after heat treatment
[1] Huang W D,Lin X,Chen J,Li Y M. Laser Solid Forming. Xi'an: Northwestern Polytechnical University Press, 2007: 10 (黄卫东,林 鑫,陈 静,李延民. 激光立体成形. 西安: 西北工业大学出版社, 2007: 10)
[2] Feng L P, Huang W D, Yang H O. Acta Metall Sin, 2002; 38: 501 (冯莉萍, 黄卫东, 杨海鸥. 金属学报, 2002; 38: 501)
[3] Gaumann M, Henry S, Wagniere J D. Mater Sci Eng, 1999; A271: 232
[4] Qi H, Azer M, Ritter A. Metall Mater Trans, 2009; 40A: 2410
[5] Xu X J, Lin X, Yang M C, Huang W D. Acta Metall Sin, 2008; 44: 1013 (许小静, 林 鑫, 杨模聪, 黄卫东. 金属学报, 2008; 44: 1013)
[6] Cao J, Liu F C, Lin X, Huang C P, Chen J, Huang W D. Opt Laser Technol, 2013; 45: 228
[7] Chen H, Gu D D, Dai D H. Opt Laser Technol, 2013; 54: 98
[8] Wang L, Xu X J, Lin X. Huang W D. Acta Metall Sin, 2010; 46: 1081 (王 亮, 许小静, 林 鑫, 黄卫东. 金属学报, 2010; 46: 1081)
[9] Liu F C, Lin X, Zhao X M, Chen J, Huang W D. Opt Laser Technol, 2011; 43: 208
[10] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901
[11] Wang Z, Li J G, Zhao N R, Jin T, Zhang J H. Acta Metall Sin, 2002; 38: 920 (王 震, 李金国, 赵乃仁, 金 涛, 张静华. 金属学报, 2002; 38: 920)
[12] Kolotukhin E V, Baum B A, Kuleshova E A, Larioiov V N, Tretyakova E E, Tyagunov G V. Steel, 1992; (7): 21
[13] Blackwell P L. J Mater Process Technol, 2005; 170: 240
[14] Lin X, Yang H O, Chen J, Huang W D. Acta Metall Sin, 2006; 42: 361 (林 鑫, 杨海鸥, 陈 静, 黄卫东. 金属学报, 2006; 42: 361)
[15] Zhao X M, Chen J, Lin X, Huang W D. Mater Sci Eng, 2008; A478: 119
[16] Liu F C, Lin X, Huang W D. Rare Met Mater Eng, 2010; 39: 1519 (刘奋成, 林 鑫, 黄卫东. 稀有金属材料与工程, 2010; 39: 1519)
[17] Zhao W W, Lin X, Chen J, Huang W D. Chin J Lasers, 2009; 36: 3220 (赵卫卫, 林 鑫, 陈 静, 黄卫东. 中国激光, 2009; 36: 3220)
[18] Liu F C. PhD Dissertation, Northwestern Polytechnical University, Xi' an, 2011 (刘奋成. 西北工业大学博士学位论文, 西安, 2011)
[19] Zhuang J Y,Du J H,Deng Q. Wrought Superalloy GH4169. Beijing: Metallurgical Industry Press, 2006: 60 (庄景云,杜金辉,邓 群. 变形高温合金GH4169. 北京: 冶金工业出版社, 2006: 60)
[20] Rong Y, Chen S, Hu G X. Mater Sci Eng, 1999; A30: 2297
[21] Lin Y C, Deng J, Jiang Y Q, Wen D X, Liu G. Mater Sci Eng, 2014; A598: 251
[22] Liu F C, Lin X, Yang G L, Huang C P, Chen J, Huang W D. Acta Metall Sin, 2010; 46: 1047 (刘奋成, 林 鑫, 杨高林, 黄春平, 陈 静, 黄卫东. 金属学报, 2010; 46: 1047)
[23] Cui Y X,Wang C L. Analysis of Metal Fracture Surface. Harbin: Harbin Institute of Technology Press, 1998: 48 (崔约贤,王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 48)
[24] Song X G. Master Thesis, Harbin Institute of Technology, 2007 (宋晓国. 哈尔滨工业大学硕士学位论文, 2007)
[25] Sundararaman M, Mukhopadhyay P, Banerjee S. Metall Mater Trans, 1988; 19A: 453
[26] Guo K X, Lin B J. Acta Phys Sin, 1978; 27: 729
[27] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361: 191
[28] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T. Mater Sci Eng, 2005; A397: 297
[29] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 107 (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 107)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!