|
|
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718 |
Kan SONG,Kai YU,Xin LIN( ),Jing CHEN,Haiou YANG,Weidong HUANG |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 |
|
Cite this article:
Kan SONG,Kai YU,Xin LIN,Jing CHEN,Haiou YANG,Weidong HUANG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718. Acta Metall Sin, 2015, 51(8): 935-942.
|
Abstract With the development of additive manufacturing technology of metal, laser solid forming (LSF) has become an important fabricating method for high performance and complex Inconel 718 alloy components. However, there still exist a certain microsegregation and a large uneven distribution of residual stress in as-deposited Inconel 718 alloy due to rapid heating and cooling in LSF. Heat treatment is a necessary method for further improving the microstructure and mechanical properties. In this work, the microstructure and mechanical properties of LSFed Inconel 718 alloy heat treated with high temperature solution, d phase aging and double aging treatment was investigated, the dislocation configuration of heat treated LSFed Inconel 718 alloy was characterized. It is found that the recrystallization occurs after the heat treatment, which leads to the transition from the columnar grain in the as-deposited to the equiaxed grain. Laves phase is dissolved completely after the heat treatment, and the needle d phase and the g″ phase precipitate along the grain boundary and in the g phase matrix, respectively. The strength, elongation and reduction of area of the heat treated Inconel 718 alloy satisfy the wrought standards. There are two kinds of interactions between the dislocation and the g″ phase, the shearing mechanism and the Orowan bypass mechanism, which play the dominant role corresponding to the lower and the higher distribution density of g″ phase, respectively. Additionally, the dislocations pile up at the d phase owing to the larger size of the d phase in the heat treated Inconel 718 alloy compared with that in the wrought. The dislocation glide can be also hindered by carbide due to the pinning and drag effect.
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51323008, 51105311 and 51271213), National Basic Research Program of China (No.2011CB610402), National High Technology Research and Development Program of China (No.2013AA031103), China Postdoctoral Science Foundation (No.2015M572597) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20116102110016) |
[1] | Huang W D,Lin X,Chen J,Li Y M. Laser Solid Forming. Xi'an: Northwestern Polytechnical University Press, 2007: 10 (黄卫东,林 鑫,陈 静,李延民. 激光立体成形. 西安: 西北工业大学出版社, 2007: 10) | [2] | Feng L P, Huang W D, Yang H O. Acta Metall Sin, 2002; 38: 501 (冯莉萍, 黄卫东, 杨海鸥. 金属学报, 2002; 38: 501) | [3] | Gaumann M, Henry S, Wagniere J D. Mater Sci Eng, 1999; A271: 232 | [4] | Qi H, Azer M, Ritter A. Metall Mater Trans, 2009; 40A: 2410 | [5] | Xu X J, Lin X, Yang M C, Huang W D. Acta Metall Sin, 2008; 44: 1013 (许小静, 林 鑫, 杨模聪, 黄卫东. 金属学报, 2008; 44: 1013) | [6] | Cao J, Liu F C, Lin X, Huang C P, Chen J, Huang W D. Opt Laser Technol, 2013; 45: 228 | [7] | Chen H, Gu D D, Dai D H. Opt Laser Technol, 2013; 54: 98 | [8] | Wang L, Xu X J, Lin X. Huang W D. Acta Metall Sin, 2010; 46: 1081 (王 亮, 许小静, 林 鑫, 黄卫东. 金属学报, 2010; 46: 1081) | [9] | Liu F C, Lin X, Zhao X M, Chen J, Huang W D. Opt Laser Technol, 2011; 43: 208 | [10] | Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901 | [11] | Wang Z, Li J G, Zhao N R, Jin T, Zhang J H. Acta Metall Sin, 2002; 38: 920 (王 震, 李金国, 赵乃仁, 金 涛, 张静华. 金属学报, 2002; 38: 920) | [12] | Kolotukhin E V, Baum B A, Kuleshova E A, Larioiov V N, Tretyakova E E, Tyagunov G V. Steel, 1992; (7): 21 | [13] | Blackwell P L. J Mater Process Technol, 2005; 170: 240 | [14] | Lin X, Yang H O, Chen J, Huang W D. Acta Metall Sin, 2006; 42: 361 (林 鑫, 杨海鸥, 陈 静, 黄卫东. 金属学报, 2006; 42: 361) | [15] | Zhao X M, Chen J, Lin X, Huang W D. Mater Sci Eng, 2008; A478: 119 | [16] | Liu F C, Lin X, Huang W D. Rare Met Mater Eng, 2010; 39: 1519 (刘奋成, 林 鑫, 黄卫东. 稀有金属材料与工程, 2010; 39: 1519) | [17] | Zhao W W, Lin X, Chen J, Huang W D. Chin J Lasers, 2009; 36: 3220 (赵卫卫, 林 鑫, 陈 静, 黄卫东. 中国激光, 2009; 36: 3220) | [18] | Liu F C. PhD Dissertation, Northwestern Polytechnical University, Xi' an, 2011 (刘奋成. 西北工业大学博士学位论文, 西安, 2011) | [19] | Zhuang J Y,Du J H,Deng Q. Wrought Superalloy GH4169. Beijing: Metallurgical Industry Press, 2006: 60 (庄景云,杜金辉,邓 群. 变形高温合金GH4169. 北京: 冶金工业出版社, 2006: 60) | [20] | Rong Y, Chen S, Hu G X. Mater Sci Eng, 1999; A30: 2297 | [21] | Lin Y C, Deng J, Jiang Y Q, Wen D X, Liu G. Mater Sci Eng, 2014; A598: 251 | [22] | Liu F C, Lin X, Yang G L, Huang C P, Chen J, Huang W D. Acta Metall Sin, 2010; 46: 1047 (刘奋成, 林 鑫, 杨高林, 黄春平, 陈 静, 黄卫东. 金属学报, 2010; 46: 1047) | [23] | Cui Y X,Wang C L. Analysis of Metal Fracture Surface. Harbin: Harbin Institute of Technology Press, 1998: 48 (崔约贤,王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 48) | [24] | Song X G. Master Thesis, Harbin Institute of Technology, 2007 (宋晓国. 哈尔滨工业大学硕士学位论文, 2007) | [25] | Sundararaman M, Mukhopadhyay P, Banerjee S. Metall Mater Trans, 1988; 19A: 453 | [26] | Guo K X, Lin B J. Acta Phys Sin, 1978; 27: 729 | [27] | Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361: 191 | [28] | He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T. Mater Sci Eng, 2005; A397: 297 | [29] | Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 107 (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 107) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|