Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1437-1445    DOI: 10.11900/0412.1961.2014.00311
Current Issue | Archive | Adv Search |
INFLUENCE OF HEATING RATE ON THE DECARBU- RIZED ANNEALING MICROSTRUCTURE AND TEXTURE IN LOW-CARBON NON-ORIENTED ELECTRICAL STEEL
XIA Dongsheng, YANG Ping(), XIE Li, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

XIA Dongsheng, YANG Ping, XIE Li, MAO Weimin. INFLUENCE OF HEATING RATE ON THE DECARBU- RIZED ANNEALING MICROSTRUCTURE AND TEXTURE IN LOW-CARBON NON-ORIENTED ELECTRICAL STEEL. Acta Metall Sin, 2014, 50(12): 1437-1445.

Download:  HTML  PDF(8100KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The present work investigates the effect of heating rate on the evolution of decarburized microstructures and textures in low-carbon electrical steels within the inter-critical temperature region. The results show that heating rate has a significant effect on both the final microstructures and textures during the process of decarburization annealing. The ''nucleation'' sites of columnar grains are determined by the heating rate. Slow heating rate would have the ''nuclei'' formed within a certain range of the surface layer, and finally leading to a fine-grained layer near the sample surface. By comparison, a complete columnar microstructure is acquired under the rapid heating condition. Strong g-fiber and relatively weak a-fiber components were obtained at the slow heating rate. In contrast, g-fiber texture is greatly weakened and a-fiber component slightly strengthened under the rapid heating condition, and a relatively strong {001}<120> texture is formed at the same time. The experimental results prove that the final decarburized textures are mainly dependent upon the texture component of recrystallized grains in the ''nucleation'' sites.

Key words:  electrical steel      columnar grain      microstructure      texture      heating rate     
ZTFLH:  TG111  
Fund: Supported by National Natural Science Foundation of China (No.51071024)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00311     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1437

Fig.1  Experimental processing route map
Fig.2  Decarburized microstructures in low-carbon electrical steels under different processing conditions (ND and RD denote the normal direction and rolling direction of the sample, respectively)

(a) H1DA2: 25 ℃/s, 900 ℃, 2 min

(b) H1DA2: 25 ℃/s, 900 ℃, 15 min

(c) H1DA3: 11 ℃/s, 900 ℃, 6 min

(d) H1DA3: 11 ℃/s, 900 ℃, 15 min

(e) H1DA1: 25 ℃/s, 780℃, 15 min

Fig.3  EBSD maps (a, b) and corresponding orientation distribution functions (ODFs) (c, d) at φ2=45° section under heating rates of 11 ℃/s (H1DA3) (a, c) and 25 ℃/s (H1DA2) (b, d)
Fig.4  Statistics for recrystallized textures in the surface layer at different heating rates
Fig.5  Partially recrystallized microstructure at slow heating rate
Fig.6  Schematic of temperature profiles within the samples under different heating conditions (T, as Y axis, is the temperature at a certain depth in the sample during the heating process, and 2x/h, as X axis, shows a certain depth along the sample′s ND; Ts is the temperature at the sample′s surface; T0 is the critical temperature for the formation of columnar nuclei; S and R denote the slow and rapid heating conditons, respectively; DR and DS are the critical depth in the sample for the formation of columnar ''nuclei'' at the critical temperature T0 under rapid and slow heating conditions, respectively)
Fig.7  Statistics for certain fiber-textures under slow (a) and rapid (b) heating rates
Fig.8  EBSD maps, (110) pole figure and corresponding φ2=45° section ODF for the H2DA2 samples

(a) partially recrystallized

(b) (110) pole figure for the appointed grain in Fig.8a

(c) after decarburization annealing

(d) φ2=45° section ODF of Fig.8c

[1] He Z Z,Zhao Y,Luo H W. Electrical Steels. Beijing: Metallurgical Industry Press, 2012: 187
(何忠治,赵 宇,罗海文. 电工钢. 北京: 冶金工业出版社, 2012: 187)
[2] Park J T, Szpunar J A, Cha S Y. ISIJ Int, 2003; 43: 1611
[3] Tomida T, Tanaka T. ISIJ Int, 1995; 35: 548
[4] Tomida T. J Appl Phys, 1996; 79: 5443
[5] Tomida T. J Mater Eng Perform, 1996; 5: 316
[6] Tomida T, Uenoya S. IEEE Trans Magn, 2001; 37: 2318
[7] Tomida T, Sano N, Ueda K, Fujiwarab K, Takahashi N. J Magn Magn Mater, 2003; 254-255: 315
[8] Tomida T. Metall Trans, 2003; 44: 1096
[9] Kovac F, Dzubinsky M, Sidor Y. J Magn Magn Mater, 2004; 269: 333
[10] He L J. Wuhan Iron Steel Corp Technol, 1981; (3): 58
(何礼君. 武钢技术, 1981; (3): 58)
[11] He L J, Pei D R. Wuhan Iron Steel Corp Technol, 1981; (4): 28
(何礼君, 裴大荣. 武钢技术, 1981; (4): 28)
[12] Xie L,Yang P,Zhang N,Mao W M
[13] Marder A R. Metall Trans, 1986; 17A: 1227
[14] Ashbrook R W J, Marder A R. Metall Trans, 1985; 16A: 897
[15] Swisher J H. Trans TMS AIME, 1968; 242: 763
[16] Pyyry J, Kettunen E. Scand J Met, 1973; 2: 265
[17] Marder A, Perpetua S M, Kowalik J A, Stephenson E T. Metall Trans, 1985; 16A: 1160
[18] Sidor Y, Kovac F. Mater Charact, 2005; 55: 1
[19] Dzubinsky M, Sidor Y, Kovac F. Mater Sci Eng, 2004; A385: 449
[20] Sidor Y, Kovac F, Kvackaj T. Acta Mater, 2007; 55: 1711
[21] Mao W M,Zhao X B. Recrystallization and Grain Growth in Metals. Beijing: Metallurgical Industry Press, 1994: 274
(毛卫民,赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 274)
[22] Carlos R O. Scr Mater, 1996; 35: 1253
[23] Takashima M, Komatsubara M, Morit N. ISIJ Int, 1997; 37: 1263
[24] Park J T, Szpunar J A. Acta Mater, 2003; 51: 3037
[25] Xie L, Yang P, Zhang N, Zong C, Xia D S, Mao W M. J Magn Magn Mater, 2014; 356: 1
[26] Sung J K, Lee D N, Wang D H. ISIJ Int, 2011; 51: 284
[27] Sung J K, Park S M, Shim B Y. Mater Sci Forum, 2012; 702-703: 730
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!