|
|
MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL |
CHEN Jun1, LÜ Mengyang2, TANG Shuai1( ), LIU Zhenyu1, WANG Guodong1 |
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819 |
|
Cite this article:
CHEN Jun, LÜ Mengyang, TANG Shuai, LIU Zhenyu, WANG Guodong. MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL. Acta Metall Sin, 2014, 50(5): 524-530.
|
Abstract The microstructure, mechanical properties and precipitation behaviors in a low carbon V-Ti microalloyed steel were investigated using thermal simulation. The microstructural characteristics of tested steel were analyzed using OM and TEM. The results show that the larger volume fraction of ferrite can be obtained for different isothermal temperatures. The ferrite volume fraction is increased and ferrite grain size is reduced as the isothermal temperature is lowered. The planar interphase precipitation can be observed for different isothermal temperatures, and both sheet spacing and precipitates size are refined by lowering isothermal temperature. Moreover, the nanometer-sized carbides have a NaCl-type crystal structure with a lattice parameter of about 0.436 nm and they can obey one variant of Baker-Nutting (B-N) orientation relationship of (100)carbide//(100)ferrite and [011]carbide//[001]ferrite. The precipitation hardening for the specimen treated at 680 ℃ for 30 min can reach 360.6 MPa.
|
|
|
Fund: Supported by National Natural Science Foundation of China (No.51204049) and Fundamental Research Funds for the Central Universities (No.N110607003) |
About author: null
陈 俊, 男, 1982年生, 博士生 |
[1] |
Chen J, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2012; 48: 441
|
|
(陈 俊, 唐 帅, 刘振宇, 王国栋. 金属学报, 2012; 48: 441)
|
[2] |
Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
|
[3] |
Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
|
[4] |
Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
|
[5] |
Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
|
[6] |
Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
|
[7] |
Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
|
[8] |
Kestenbach H J, Campos S S, Morales E V. Mater Sci Technol, 2006; 22: 615
|
[9] |
Jang J H, Heo Y U, Lee C H, Bhadeshia H K D H, Suh D W. Mater Sci Technol, 2013; 29: 309
|
[10] |
Yen H W, Huang C Y, Yang J R. Scr Mater, 2009; 61: 616
|
[11] |
Chen C Y, Yen H W, Kao F H, Li W C, Huang C Y, Yang J R, Wang S H. Mater Sci Eng, 2009; A499: 162
|
[12] |
Okamoto R, Borgenstam A, Ågren J. Acta Mater, 2010; 58: 4783
|
[13] |
Mukherjee S, Timokhina I B, Zhu C, Ringer S P, Hodgson P D. Acta Mater, 2013; 61: 2521
|
[14] |
Sakuma T, Honeycombe R W K. Met Sci, 1984; 18: 449
|
[15] |
Dunlop G L, Carlsson C J, Frimodig G. Metall Trans, 1978; 9A: 261
|
[16] |
Freeman S, Honeycombe R W K. Met Sci, 1977; 11: 59
|
[17] |
Honeycombe R W K, Mehl Medalist R F. Metall Trans, 1976; 7A: 915
|
[18] |
Zhang Y J, Miyamoto G, Shinbo K, Furuhara T. Scr Mater, 2013; 69: 17
|
[19] |
Davenport A T, Berry F G, Honeycombe R W K. Met Sci, 1968; 2: 104
|
[20] |
Foreman A J E, Makin M J. Can J Phys, 1967; 45: 511.
|
[21] |
Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd., 1978: 63
|
[22] |
Taylor K A. Scr Metall Mater, 1995; 32: 7
|
[23] |
Misra R D K, Nathani H, Hartmann J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
|
[24] |
Brito R M, Kestenbach H J. J Mater Sci, 1981; 16: 1257
|
[25] |
Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|