Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 524-530    DOI: 10.3724/SP.J.1037.2013.00681
Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL
CHEN Jun1, LÜ Mengyang2, TANG Shuai1(), LIU Zhenyu1, WANG Guodong1
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

CHEN Jun, LÜ Mengyang, TANG Shuai, LIU Zhenyu, WANG Guodong. MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL. Acta Metall Sin, 2014, 50(5): 524-530.

Download:  HTML  PDF(8371KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure, mechanical properties and precipitation behaviors in a low carbon V-Ti microalloyed steel were investigated using thermal simulation. The microstructural characteristics of tested steel were analyzed using OM and TEM. The results show that the larger volume fraction of ferrite can be obtained for different isothermal temperatures. The ferrite volume fraction is increased and ferrite grain size is reduced as the isothermal temperature is lowered. The planar interphase precipitation can be observed for different isothermal temperatures, and both sheet spacing and precipitates size are refined by lowering isothermal temperature. Moreover, the nanometer-sized carbides have a NaCl-type crystal structure with a lattice parameter of about 0.436 nm and they can obey one variant of Baker-Nutting (B-N) orientation relationship of (100)carbide//(100)ferrite and [011]carbide//[001]ferrite. The precipitation hardening for the specimen treated at 680 ℃ for 30 min can reach 360.6 MPa.

Key words:  V-Ti microalloyed steel      isothermal temperature      microstructure      interphase precipitation      Vickers-hardness     
ZTFLH:  TG142.33  
Fund: Supported by National Natural Science Foundation of China (No.51204049) and Fundamental Research Funds for the Central Universities (No.N110607003)
About author:  null

陈 俊, 男, 1982年生, 博士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00681     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/524

Fig.1  

热模拟工艺示意图

Fig.2  

不同等温温度下实验钢的OM像

Fig.3  

不同等温温度下实验钢中的铁素体体积分数及晶粒尺寸

Fig.4  

不同等温温度下实验钢的典型TEM像

Fig.5  

不同等温温度下相间析出列间距及析出粒子尺寸

Fig.6  

实验钢在750 ℃下等温30 min 的TEM明暗场像和选区电子衍射花样及其标定

Fig.7  

不同等温温度下实验钢的Vickers硬度

Fig.8  

不同等温温度下固溶C, V, Ti及(Ti, V)C析出量和系数x

Temperature / ℃ Δs0 / MPa ΔsSS / MPa ΔsGB / MPa ΔsDis / MPa ΔsOrowan / MPa sy / MPa
750 53.9 76.2 163.6 168.5 239.3 585.8
720 53.9 76.2 174.3 168.5 277.9 628.4
700 53.9 76.2 178.8 168.5 287.5 641.5
680 53.9 76.2 194.2 168.5 360.6 721.6
表1  不同等温温度下实验钢的屈服强度及其分量
[1] Chen J, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2012; 48: 441
(陈 俊, 唐 帅, 刘振宇, 王国栋. 金属学报, 2012; 48: 441)
[2] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[3] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[4] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[5] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[6] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[7] Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[8] Kestenbach H J, Campos S S, Morales E V. Mater Sci Technol, 2006; 22: 615
[9] Jang J H, Heo Y U, Lee C H, Bhadeshia H K D H, Suh D W. Mater Sci Technol, 2013; 29: 309
[10] Yen H W, Huang C Y, Yang J R. Scr Mater, 2009; 61: 616
[11] Chen C Y, Yen H W, Kao F H, Li W C, Huang C Y, Yang J R, Wang S H. Mater Sci Eng, 2009; A499: 162
[12] Okamoto R, Borgenstam A, Ågren J. Acta Mater, 2010; 58: 4783
[13] Mukherjee S, Timokhina I B, Zhu C, Ringer S P, Hodgson P D. Acta Mater, 2013; 61: 2521
[14] Sakuma T, Honeycombe R W K. Met Sci, 1984; 18: 449
[15] Dunlop G L, Carlsson C J, Frimodig G. Metall Trans, 1978; 9A: 261
[16] Freeman S, Honeycombe R W K. Met Sci, 1977; 11: 59
[17] Honeycombe R W K, Mehl Medalist R F. Metall Trans, 1976; 7A: 915
[18] Zhang Y J, Miyamoto G, Shinbo K, Furuhara T. Scr Mater, 2013; 69: 17
[19] Davenport A T, Berry F G, Honeycombe R W K. Met Sci, 1968; 2: 104
[20] Foreman A J E, Makin M J. Can J Phys, 1967; 45: 511.
[21] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd., 1978: 63
[22] Taylor K A. Scr Metall Mater, 1995; 32: 7
[23] Misra R D K, Nathani H, Hartmann J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
[24] Brito R M, Kestenbach H J. J Mater Sci, 1981; 16: 1257
[25] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!