Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 524-530    DOI: 10.3724/SP.J.1037.2013.00681
Original Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL
CHEN Jun 1), Lü Mengyang 2), TANG Shuai 1), LIU Zhenyu 1), WANG Guodong 1)
1) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2) School of Materials and Metallurgy, Northeastern University, Shenyang 110819
Download:  HTML  PDF(8371KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure, mechanical properties and precipitation behaviors in a low carbon V-Ti microalloyed steel were investigated using thermal simulation. The microstructural characteristics of tested steel were analyzed using OM and TEM. The results show that the larger volume fraction of ferrite can be obtained for different isothermal temperatures. The ferrite volume fraction is increased and ferrite grain size is reduced as the isothermal temperature is lowered. The planar interphase precipitation can be observed for different isothermal temperatures, and both sheet spacing and precipitates size are refined by lowering isothermal temperature. Moreover, the nanometer-sized carbides have a NaCl-type crystal structure with a lattice parameter of about 0.436 nm and they can obey one variant of Baker-Nutting (B-N) orientation relationship of (100)carbide//(100)ferrite and [011]carbide//[001]ferrite. The precipitation hardening for the specimen treated at 680 ℃ for 30 min can reach 360.6 MPa.
Key words:  V-Ti microalloyed steel      isothermal temperature      microstructure      interphase precipitation      Vickers-hardness     
Received:  28 October 2013     
ZTFLH:  TG142.33  
Fund: Supported by National Natural Science Foundation of China (No.51204049) and Fundamental Research Funds for the Central Universities (No.N110607003)
Corresponding Authors:  TANG Shuai, lecturer, Tel: (024)83681803, E-mail: tangshuai@ral.neu.edu.cn   

Cite this article: 

CHEN Jun , Lü Mengyang , TANG Shuai , LIU Zhenyu , WANG Guodong . MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL. Acta Metall Sin, 2014, 50(5): 524-530.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00681     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/524

[1] Chen J, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2012; 48: 441
(陈 俊, 唐 帅, 刘振宇, 王国栋. 金属学报, 2012; 48: 441)
[2] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[3] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[4] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[5] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[6] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[7] Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[8] Kestenbach H J, Campos S S, Morales E V. Mater Sci Technol, 2006; 22: 615
[9] Jang J H, Heo Y U, Lee C H, Bhadeshia H K D H, Suh D W. Mater Sci Technol, 2013; 29: 309
[10] Yen H W, Huang C Y, Yang J R. Scr Mater, 2009; 61: 616
[11] Chen C Y, Yen H W, Kao F H, Li W C, Huang C Y, Yang J R, Wang S H. Mater Sci Eng, 2009; A499: 162
[12] Okamoto R, Borgenstam A, ?gren J. Acta Mater, 2010; 58: 4783
[13] Mukherjee S, Timokhina I B, Zhu C, Ringer S P, Hodgson P D. Acta Mater, 2013; 61: 2521
[14] Sakuma T, Honeycombe R W K. Met Sci, 1984; 18: 449
[15] Dunlop G L, Carlsson C J, Frimodig G. Metall Trans, 1978; 9A: 261
[16] Freeman S, Honeycombe R W K. Met Sci, 1977; 11: 59
[17] Honeycombe R W K, Mehl Medalist R F. Metall Trans, 1976; 7A: 915
[18] Zhang Y J, Miyamoto G, Shinbo K, Furuhara T. Scr Mater, 2013; 69: 17
[19] Davenport A T, Berry F G, Honeycombe R W K. Met Sci, 1968; 2: 104
[20] Foreman A J E, Makin M J. Can J Phys, 1967; 45: 511.
[21] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd., 1978: 63
[22] Taylor K A. Scr Metall Mater, 1995; 32: 7
[23] Misra R D K, Nathani H, Hartmann J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
[24] Brito R M, Kestenbach H J. J Mater Sci, 1981; 16: 1257
[25] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[7] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[14] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[15] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
No Suggested Reading articles found!