Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 379-386    DOI: 10.3724/SP.J.1037.2013.00493
Current Issue | Archive | Adv Search |
LI Yubin, WANG Wei, HE Jianjun, ZHANG Zhiqiang, ZHANG Tongyan
China Academy of Engineering physics, Mianyang 621900
Download:  HTML  PDF(12526KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructures and mechanical properties of hypoeutectoid U-Nb alloy laser welded joint were investigated by optical microscopy (OM), X-ray diffractometer (XRD), transmission electron microscopy (TEM), split hopkinson pressure bar (SHPB) and other analysis apparatus. The results show that the microstructure of hypoeutectoid U-Nb alloy base metal is α-U+γ-U lamellar pearlite under isothermal heat treatment, while the laser welding seam is composed of α' lath martensite for pre-heated or α' twin martensite for no pre-heated with orthogonal crystal structure. The quasi-static tensile strength of welded joint (about 400 MPa) is much less than base metal and microstructures of weld, for the main reason of incomplete penetration weld and low fracture toughness. Between dynamic impact loading for base and welded joint, the strain rate of welded joint is lower than base metal, and the yield strength of welded joint is higher. Also, the compressive stress-strain curves indicated that the flow stresses for welded joint increased with the increase of strain rate and the obvious effect of strain rate hardening has been observed. At strain rate of 2000 s-1, selected plastic deformation taking place in welded joint is due to the tremendous difference mechanic properties between weld seam and base metal, and the adiabatic shear band(ASB) only appears in the rest of welded joint.
Key words:  hypoeutectoid U-Nb alloy      laser welding      microstructure      mechanical property      dynamic compression     
Received:  15 August 2013     
ZTFLH:  TG146.2  
Fund: Supported by Development Fund of China Academy of Engineering Physics (No.2011B0301055)
Corresponding Authors:  LI Yubin, Tel: (0816)3626940, E-mail: sinzao@sina. cn   

Cite this article: 


URL:     OR

[1] Wilkinson W D. Uranium Metal. Volume II, New York: Interscience Publisher, 1962: 13
[2] Koike J, Kassner M E, Tate R E. J Phase Equil, 1998; 19: 253
[3] Burke J J, Colling D A, Gorum A E. Physical Metallurgy of Uranium Alloys. New York: Brook Hill Publishing Company, 1976: 22
[4] Wood D H, Dini J W. J Nucl Mater, 1983; 114: 199
[5] Chancellor W, Wolfenden A. J Nucl Mater, 1990; 171: 389
[6] Turner P W, Lundin C D. Weld J, 1970; 49: 579
[7] Tatarivo V R, krasnorutskii V S, Rubashko V G. At Energy J, 1977; 43: 122
[8] Sunwoo A. Scr Mater, 1997; 37: 691
[9] Wood D H, Mara G L. Weld J, 1977; 56: 88
[10] Elmer J W, Teruya A T, Errill P E. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-ID-141043, 2000
[11] Elmer J W, Teruya A T, Errill P E. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-JC-144232, 2001
[12] Gleen L, James L. Lawrence Livermore National Laboratory Report. LM, US: Lawrence Livermore National Lab, UCRL-87469, 1982
[13] Scott T B, Petherbridge J R, Findlay I, Glascott J, Allen G C. J Alloys Compd, 2009; 475: 766
[14] Petherbridge J R, Scott T B, Glascott J, Allen G C, Findlay I. J Alloys Compd, 2009; 476: 543
[15] Field R D, McCabe R J, Alexander D J, Teter D F. J Nucl Mater, 2009; 392: 105
[16] Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M. Int J Impact Eng, 2005; 32: 541
[17] Ishikawa K, Watanabe H, Mukai T. Mater Lett, 2005; 59: 1511
[18] Gong X, Fan J L, Huang B Y, Tian J M. Mater Sci Eng, 2010; A527: 7565
[19] Dong D Y, Liu Y, Wang L, Su L G. Acta Metall Sin, 2013; 49: 159
(董丹阳, 刘 杨, 王 磊, 苏亮进. 金属学报, 2013; 49: 159)
[20] Gourdin W H, Lassila D H. Acta Metall Mater, 1991; 39: 2337
[21] Chen Z Y, Cai H N, Wang F C, Tan C W, Zhan C K, Liu C M. Acta Metall Sin, 2009; 45: 143
(陈志永, 才鸿年, 王富耻, 谭成文, 詹从堃, 刘楚明. 金属学报, 2009; 45: 143)
[22] Gong S L , Zhang J X, Pei Y, Yu Q. J Xi'an Jiaotong Univ, 2000; 34: 81
(巩水利, 张建勋, 裴 怡, 于 琴. 西安交通大学学报, 2000; 34: 81)
[23] Xu Z J, Li Y L, Liu M S, Li P Z, Wu Y G. Acta Metall Sin, 2008; 44: 98
(许泽建, 李玉龙, 刘明爽, 李朋洲, 吴云刚. 金属学报, 2008; 44: 98)
[24] Zhang J, Tan C W, Ren Y, Wang F C, Cai H N. Trans Nonferrous Met Soc China, 2011; 21: 39
[25] Cui Z Q, Qin Y C. Metallography and Heat Treatment. 2nd Ed., Beijing: China Machine Press, 2004: 266
(崔忠圻, 覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2004: 266)
[26] Kollie T G, Anderson R C, Carpenter D A, Smith D D. J Nucl Mater, 1984; 120: 160
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[7] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[12] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[13] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[14] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[15] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
No Suggested Reading articles found!