Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 19-24    DOI: 10.3724/SP.J.1037.2013.00498
Original Articles Current Issue | Archive | Adv Search |
INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A HIGH-STRENGTH Zr-Ti ALLOY
LI Ye(), ZHANG Long, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LI Ye, ZHANG Long, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A HIGH-STRENGTH Zr-Ti ALLOY. Acta Metall Sin, 2014, 50(1): 19-24.

Download:  HTML  PDF(5772KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the high stress, relative low density and excellent resistance of radiation, Zr-based alloys have become promising structural materials used in the space environment. The relationship between microstructure and mechanical properties is the key issue for designing Zr-based alloy in different alloy systems and has attracted extensive research interests. The microstructures could be adjusted by different processes of heat treatment and thus realizing the optimization of mechanical properties. In this work, the initial microstructure and mechanical properties of a high strength Zr47Ti45Al5V3 (mass fraction, %) alloy was investigated. The XRD results reveal that the initial Zr-based alloy is consisted of α (hcp) and β (bcc) phases. Transmission electron microscopy result shows that the lathy α phase homogenously distributed within the β phase matrix. Mechanical tests of this alloy show very high strength but limited plasticity. The tensile strength is 1648 MPa. However, the tensile elongation is only 0.8%. DSC trace indicates that the transition temperature of α phase to β phase is located between 560~750 ℃ that provides the possibility to adjust the microstructures through different processes of heat treatment. In order to optimize the mechanical properties, several different processes of heat treatment were conducted on this Zr-based alloy, and the relative volume fraction of α and β phase is successfully adjusted. According to the mechanical tests, the plasticity becomes larger as the amount of β phase increases with a slight decrease in strength. When the volume fraction of β phase is about 60%, the alloy exhibits the optimal mechanical performance with a tensile strength of 1398 MPa and an elongation of 3.1%.

Key words:  Zr alloy      mechanical property      phase transformation      plastic deformation     
Received:  19 August 2013     
ZTFLH:  TG146.414  
  TG113.25  
Fund: Supported by National Basic Research Program of China (No.2010CB731602)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00498     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/19

Fig.1  

初始加工态Zr-Ti合金试样的DSC曲线

Fig.2  

不同温度退火后Zr-Ti合金的XRD谱

Fig.3  

不同温度退火后Zr-Ti合金的TEM像

Fig.4  

初始热锻状态和不同温度热处理后Zr-Ti合金的拉伸应力-应变曲线

Specimen (0002)α (110)β (1010)α (1010)α / (110)β
Original state 368 2139 1837 0.858659
560 ℃ 729 1317 1317 1.105998
570 ℃ 1058 3174 2073 0.653264
590 ℃ 872 7070 2613 0.369646
650 ℃ 0 3657 228 0.062436
800 ℃ 0 2160 0 0
表1  不同状态下Zr-Ti合金最强衍射峰拟合面积
Fig.5  

Zr-Ti合金的延伸率与β相含量的关系

[1] Wang S H, Yang D Z, He S Y, Lv G.Mater Sci Technol, 2004; 6: 579
(王淑花, 杨德庄, 何世禹, 吕 钢. 材料科学与工艺, 2004; 6: 579)
[2] Li X, Wang L, Yu X M.Mater Sci Eng, 2013; A33: 2987
[3] Tribble A. The Space Environment-Implications for Spacecraft Design. New Jersey: Princeton University Press, 1995: 1
[4] Lowenstein D I, Rusek A.Ridiat Environ Bioph, 2007; 46: 91
[5] Shilobreeva S N, Kashkarov L L, Barabanenkov M Y, Pustovit A N, Zinenko V I, Agafonov Y A.Dokl Earth Sci, 2006; 411: 9
[6] Qian J,Zhu Y L,Feng Y Y,Li F B. The Basic of Space Technology. Beijing: Science Press, 1986: 520
(钱 骥,朱毅麟,冯英远,李凡本. 空间技术基础. 北京: 科学出版社, 1986: 520)
[7] Zhao W J, Zhou B X, Miao Z, Peng F, Jiang Y R, Jiang H M, Pang H.Atom Energy Sci Technol, 2005; 39(suppl): 2
(赵文金, 周邦新, 苗 志, 彭 傅, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学与技术, 2005; 39(增刊): 2)
[8] Wicklein M, Ryan S, White D M, Clegg R A.Int J Impact Eng, 2008; 35: 1861
[9] Sakuraba K, Tsuruda Y, Hanada T, Liou J C, Akahoshi Y.Int J Impact Eng, 2008; 35: 1567
[10] Sorensen B R, Kimsey K D, Love B M.Int J Impact Eng, 2008; 35: 1808
[11] Nomura N, Oya K, Tanaka Y, Kondo R, Doi H,TsutsumiY,HanawaT.ActaBiol,2010:6:1033
[12] Hsu H C, Wu S C, Sung Y C, Ho W F.J Alloys Compd, 2009; 488: 279
[13] Dey G K, Banerjee S.Mater Sci Eng, 1985; A73: 187
[14] Lee M H, Kim J H, Choi B K, Jeong Y H.J Alloys Compd, 2007; 428: 99
[15] Dobromyslov A V, Kazantseva N V.Scr Mater, 1997; 37: 615
[16] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P.Mater Sci Eng, 2012; A532: 1
[17] Ho W F, Cheng C H, Chen W K, Wu S C, Lin H C, Hsu H C.J Alloys Compd, 2009; 471: 185
[18] Thibon I, Ansel D, Gloriant T. J Alloys Compd, 2009; 470: 127
[19] Nakasuji K, Okada M.Mater Sci Eng, 1996; A213: 162
[20] Ho W F, Chen W K, Wu S C, Hsu H C.J Mater Sci, 2008; 19: 3179
[21] Sauer C, Luetjering G. J Mater Process Technol, 2001; 117: 311
[22] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P.Mater Sci Eng, 2012; A539: 42
[23] Lu G. Mater Sci Eng, 1998; A243: 32
[24] Wang J, Zhang H W, Wang A M, Li H, Fu H M, Zhu Z W, Zhang H F.Acta Metall Sin, 2012; 48: 636
(王 杰, 张宏伟, 王爱民, 李 宏, 付华萌, 朱正旺, 张海峰. 金属学报, 2012; 48: 636)
[25] Kim T K, Choi B S, Jeong Y H, Lee D J, Chang M H. J Nucl Mater, 2002; 301: 81
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!