Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 25-31    DOI: 10.3724/SP.J.1037.2013.00579
Original Articles Current Issue | Archive | Adv Search |
DIRECTIONAL SOLIDIFICATION OF MONOTECTIC COMPOSITION Al-Bi ALLOY
YANG Zhizeng, SUN Qian, ZHAO Jiuzhou()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

YANG Zhizeng, SUN Qian, ZHAO Jiuzhou. DIRECTIONAL SOLIDIFICATION OF MONOTECTIC COMPOSITION Al-Bi ALLOY. Acta Metall Sin, 2014, 50(1): 25-31.

Download:  HTML  PDF(6603KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Monotectic systems are a kind of extensive alloys. Many of them have great potentials for practical industry application. A lot of work has been carried out to study the solidification of monotectic alloys. But most of them focused on the microstructure formation during cooling a hyper-monotectic alloy through the miscibility gap in the liquid. Little work was done on the solidification behaviors of an alloy of monotectic composition. Directional solidification experiments were carried out with Al-Bi alloy of the monotectic composition (Al-3.4%Bi, mass fraction). The influences of the solidification velocity on the microstructure were investigated. The microstructure evolution during solidification was analyzed. The results indicate that a solute-rich layer forms in front of the solidification interface and the liquid-liquid decomposition occurs there. When the alloy is solidified at such a high velocity so that the minority phase droplets of all sizes in front of the solidification interface are migrating to the solidification interface, the size distribution of the minority phase particles shows only one peak. When the alloy is solidified at a relatively low velocity, the minority phase droplets within a certain size range may move away from the solidification interface under the concurrent actions of the Marangoni migration, Stokes motion of the droplets as well as the movement of the sample. Al-3.4%Bi alloy solidified under such conditions shows a size distribution of the minority phase particles with two peaks. The average radius of the minority phase particles < R > depends on the solidification velocity V 0 exponentially according to < R > V 0 - 1 / 2 . With the decrease of the solidification velocity, the dependence of the average radius of the minority phase particles varies towards to < R > V 0 - 1 / 3 .

Key words:  monotectic alloy      immiscible alloy      directional solidification     
Received:  13 September 2013     
ZTFLH:  TG113.12  
Fund: Supported by National Natural Science Foundation of China (Nos.51071159, 51271185 and 51031003) and China Manned Space Engineering

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00579     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/25

Fig.1  

凝固界面前沿基体熔体温度和温度梯度沿试样中心轴的分布曲线

Fig.2  

Al-3.4%Bi合金以不同速度凝固后的显微组织

Fig.3  

Al-3.4%Bi合金以不同凝固速度凝固后少量相粒子的二维尺寸分布

Fig.4  

Al-3.4%Bi 合金凝固组织中少量相粒子平均直径d与凝固速度 V 0 的关系曲线

Fig.5  

偏晶点成分合金凝固时固-液界面前沿溶质富集层内溶质浓度及少量相液滴形核率

Fig.6  

液相L2的形核与界面张力间的关系

Fig.7  

以28 μm/s速度定向凝固时凝固界面前沿少量相液滴运动合速度与液滴直径间的关系

[1] Jia J,Zhao J Z,Guo J J,Liu Y. Preparation Techniques of Immiscible Alloy. Harbin: Harbin Institute of Technology Press, 2002: 2
(贾 均,赵九州,郭景杰,刘 源. 难混溶合金及其制备技术. 哈尔滨: 哈尔滨工业大学出版社, 2002: 2)
[2] Pratt G C.Int Met Rev, 1973; 18: 62
[3] Guo J J, Gui H B, Su Y Q, Bi W S, Jia J, Fu H Z.Spec Cast Nonfer Alloys, 2004; 1: 1
(郭景杰, 崔红保, 苏彦庆, 毕维生, 贾 均, 傅恒志. 特种铸造及有色合金, 2004; 1: 1)
[4] Zheng H X, Xie H, Chen Z L, Yang G C, Guo X F.Chin J Nonferrous Met, 2002; 26: 15
(郑红星, 谢 辉, 陈倬麟, 杨根仓, 郭学峰. 稀有金属, 2002; 26: 15)
[5] Zhu D, Yang X H, Han X J, Wei B B.Chin J Nonferrous Met, 2003; 13: 328
(朱 定, 杨晓华, 韩秀君, 魏炳波. 中国有色金属学报, 2003; 13: 328)
[6] Rudrakshi G B, Srivastava V C, Pathak J P, Ojha S N.Mater Sci Eng, 2004; A383: 30
[7] Liu Y, Guo J J, Jia J.Foundry, 2000; 49: 11
(刘 源, 郭景杰, 贾 均. 铸造, 2000; 49: 11)
[8] Carlberg T, Fredriksson H.Metall Trans, 1980; 11A: 1665
[9] Zhang H W, Xian A P. Acta Metall Sin, 1999; 35: 1187
(张宏闻, 冼爱平. 金属学报, 1999; 35: 1187)
[10] Yang S, Liu W J.J Mater Sci, 2001; 36: 5351
[11] Zhao J Z, Ratke L.Scr Mater, 1988; 39: 181
[12] Zhao J Z, Hu Z Q.Acta Metall Sin, 2004; 40: 27
(赵九洲, 胡壮麒. 金属学报, 2004; 40: 27)
[13] Cui H B, Guo J J, Su Y Q, Wu S P, Li X Z, Fu H Z.Acta Metall Sin, 2007; 43: 907
(崔红保, 郭景杰, 苏彦庆, 吴士平, 李新中, 傅恒志. 金属学报, 2007; 43: 907)
[14] Zhao J Z.Scr Mater, 2006; 54: 247
[15] He J. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006
(何 杰. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[16] Yang S, Liu W J, Jia J.Prog Nat Sci, 2001; 11: 729
(杨 森, 刘文今, 贾 均. 自然科学进展, 2001; 11: 729)
[17] Zhao J Z, Guo J J, Jia J, Li Q C.Chin J Nonferrous Met, 1994; 4(suppl): 164
(赵九洲, 郭景杰, 贾 均, 李庆春. 中国有色金属学报, 1994; 4(增刊): 164)
[18] Zhao J Z, Li H L, Zhao L.Acta Metall Sin, 2009; 45: 1435
(赵九洲, 李海丽, 赵 雷. 金属学报, 2009; 45: 1435)
[19] Zhao J Z.Mater Sci Technol, 2001; 9: 154
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[7] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[8] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[9] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] Bin CHEN,Jie HE,Xiaojun SUN,Jiuzhou ZHAO,Hongxiang JIANG,Lili ZHANG,Hongri HAO. Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards[J]. 金属学报, 2019, 55(6): 751-761.
[12] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[13] Lin ZHANG,Tiannan MAN,Engang WANG. Influence of Dispersed Solid Particles on the Liquid-Liquid Separation Process of Al-Bi Alloys[J]. 金属学报, 2019, 55(3): 399-409.
[14] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[15] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
No Suggested Reading articles found!