Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 946-952    DOI: 10.3724/SP.J.1037.2013.00239
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PROPERTY OF WELDING JOINT WELD WITH MICRO-ALLOYING 4043 WELDING WIRE
ZHAO Zhihao, XU Zhen, WANG Gaosong, CUI Jianzhong
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education,Northeastern University,Shenyang 110819
Cite this article: 

ZHAO Zhihao, XU Zhen, WANG Gaosong, CUI Jianzhong. MICROSTRUCTURE AND PROPERTY OF WELDING JOINT WELD WITH MICRO-ALLOYING 4043 WELDING WIRE. Acta Metall Sin, 2013, 49(8): 946-952.

Download:  PDF(816KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum alloys have been widely used in civil fields and war industry as structural materials due to their good corrosion resistance, electrical conductivity, thermal conductivity and high specific strength. But there is a serious problem of welding joints softening in welding process, which limits greatly the application of aluminum alloys. It is found that improving the composition of aluminum alloy welding wire can refine grains and enhance the mechanical properties of welding joints. Of all micro-alloying additions to aluminum, Sc offers the greatest potential for developing new light weight structural materials with excellent mechanical properties, good welding performance, desirable corrosion and creep resistance, due to the formation of extremely fine, coherent Al3Sc particles, which can effectively refine grains and inhibit recrystallization. This aspect permits to increase the possible use of commercial aluminum alloys. The strengthening mechanism is due to the coherent thermodynamically stable particles with ordered L12 structure. Addition of sufficient amount of magnesium can enhance the nucleation rate of Al3Sc. It was shown that clusters of Mg atoms were found at the center of Al3Sc particles, suggesting that Mg promotes nucleation of these particles. Moreover, addition of zirconium substitutes for scandium(for up to half of the scandium atoms) to form Al3(Sc, Zr) precipitates, which are more resistant to coarsening than binary Al3Sc precipitates. Micro--alloying aluminum alloy welding wires which can be strengthened by heat treatment were designed by adding Mg, Sc and Zr to the traditional 4043 aluminum alloy welding wire, and the heat treatment process was optimized. Welding experiment was carried out using the traditional 4043 aluminum alloy welding wire and  micro-alloying aluminum alloy welding wires. After comparing the microstructures and mechanical properties of welding joints, it was found that the mechanical properties of welding joints could be improved when adding 0.25% Mg to the 4043 aluminum alloy welding wire. The yield strength increased by 12% and the tensile strength increased by 10%, while the elongation remained constant substantially. After 530℃, 2 h+170℃, 6 h heat treatment, the yield strength of the welding joints increased by 105% and the tensile strength increased by 54%. The additions of Sc and Zr to the welding wires resulted in the finer grains significantly, raising the number of strengthening phase and increasing the strength of the welding joints.

Key words:  4043 aluminum welding wire      micro-alloying, microstructure      mechanical property      post-weld heat treatment     
Received:  02 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00239     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/946

[1] Zhou W S, Yao J S.  Welding of Aluminum and It's Alloy.Beijing: China Machine Press, 2006: 1

 (周万盛, 姚君山. 铝及铝合金的焊接. 北京: 机械工业出版社, 2006: 1)
[2] Shi Y W.  Welding Handbook. Fuzhou: Science and Technology Press, 2005: 1
 (史耀武. 焊接技术手册. 福州: 科学技术出版社, 2005: 1)
[3] Wang Z T, Tian R Z.  Handbook of Aluminum Alloy and Processing. Changsha:Central South University of Technology Press, 1989: 1
 (王祝堂, 田荣璋. 铝合金及其加工手册. 长沙: 中南工业大学出版社, 1989: 1)
[4] Coniglio N, Cross C E, Dorfel I, Osterle W.  Mater Sci Eng, 2009; A517: 321
[5] Babu N K, Talari M K, Pan D Y, Sun Z, Wei J, Siva P K.  Mater Des, 2012; 40: 467
[6] Liu J A, Wang Y L, Qu J S.  Trans Nonferrous Met Soc China, 1996; 6: 87
 (刘静安, 王元良, 屈金山. 中国有色金属学报, 1996; 6: 87)
[7] Tian Z L, Xu L H, Peng Y, Zhang X M, Li R.  Acta Metall Sin, 2008; 44: 91
 (田志凌, 许良红, 彭云, 张晓牧, 李冉. 金属学报, 2008; 44: 91)
[8] Devincent S M, Devletian J H, Gedeon S A.  Weld J, 1988; 67: 33
[9] Janaki R, Mitra T K, Olson D L.  Mater Sci Eng, 2000; A276: 48
[10] Royset J, Ryum N.  Int Mater Res, 2005; 50: 19
[11] Vijaya S, Prasad S K, Gokhale A.  Scr Mater, 2004; 50: 903
[12] Norman A F, Hyde K, Costello F, Thompson S, Birley S, Prangnell P B. Mater Sci Eng, 2003; A354: 188
[13] Fuller C B, Krause A R, Dunand D C, Seidman D N.  Mater Sci Eng, 2002; A338: 8
[14] Forbord B, Hallem H, Lefebvre W, Danoix F, Marthinsen K.  Mater Sci Eng,2006; A421: 154
[15] Rao S K, Raju N P, Reedy G M, Kamaraj M, Rao P K.  Mater Sci Technol,2009; 25: 92
[16] Du G, Yan D S, Rong L J.  Acta Metall Sin, 2008; 44: 1209
 (杜刚, 闫德胜, 戎利建. 金属学报, 2008; 44: 1209)
[17] Zuo X R, Cui H C.  Adv Mater Res, 2011; 152: 1071
[18] Cavaliere P, Cabibbo M.  Mater Charact, 2008; 59: 197
[19] Riddle Y W, Sanders T H J.  Mater Sci Forum, 2000; 331: 799
[20] Kaigorodova L I, Selnikhina E I, Tkachenko E A, Senatorova O G.  Phys Met Metall,1996; 81: 513
[21] Peng Y Y, Yin Z M, Nie B, Wang T.  Mater Sci Forum, 2007; 546: 863
[22] Zhang Y H, Yin Z M, Zhang J, Pan Q L, Peng Z H.  Rare Met Mater Eng, 2002; 31: 167
[23] Costa S, Puga H, Barbosa J, Pinto A M P.  Mater Des, 2012; 42: 347
[24] Yin Z, Pan Q, Zhang Y, Jiang F.  Mater Sci Eng, 2000, A280: 151
[25] Wang Y L, Qu J S, Yan C P.  Trans Nonferrous Met Soc China, 1997; 7: 69
 (王元良, 屈金山, 宴传鹏. 中国有色金属学报, 1997; 7: 69)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
No Suggested Reading articles found!