Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 845-852    DOI: 10.3724/SP.J.1037.2012.00712
Current Issue | Archive | Adv Search |
CHARACTERISTIC AND MECHANISM OF PHASE TRANSFORMATION OF GH4169G ALLOY DURING HEAT TREATMENT
TIAN Sugui1), WANG Xin1), XIE Jun1), LIU Chen1), GUO Zhongge1),LIU Jiao2), SUN Wenru2)
1)School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2)Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

TIAN Sugui, WANG Xin, XIE Jun, LIU Chen, GUO Zhongge,LIU Jiao, SUN Wenru. CHARACTERISTIC AND MECHANISM OF PHASE TRANSFORMATION OF GH4169G ALLOY DURING HEAT TREATMENT. Acta Metall Sin, 2013, 49(7): 845-852.

Download:  PDF(2881KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By means of heat treatment at different regimes, microstructure observation and XRD analysis, an investigation has been made into the influence of heat treatment on the phases constitution and distribution regularity of GH4169G alloy. The results show that under the experimental conditions, microstructure of GH4169G alloy consists of γ matrix, particle-like γ′,disc-like γand δ phases, and the coherent interfaces are kept between the phases. Thereinto, microstructure of directional aging treatment ITF-DA-GH4169G alloy consists of a few γ′phase, lots of γ and γ phases, however, long-time aging treatment ITF-DA-LTA-GH4169G consists of a few γ′,lots of γ, γ and needle-like δ phases. As the Nb atom diffuses into the lattice of γ′  phase during the aging treatment,γ-Ni3Al phase with L12 structure is transformed intoγ-Ni3Nb phase with DO22 structure when the Nb and Ni atoms on (001) plane of γ′ phase migrate along 1/2<110> direction. With the growth of γ phase during the long term aging, the given crystal plane in the new parallelepiped migrates along the 1/6<112> direction, which makes the γ phase transform into δ-Ni3Nb phase with DOa structure. Moreover, the γ phase may grow up into the disc-like configuration along the c-axis direction due to the restriction of the a- and b-axis coherent interfaces. And it is a main reason that the δ-Ni3Nb phase grows into needle-like configuration along the (100) plane due to the {200}δ plane ofδ phase keeps coherent interface with {111}γ plane of γ matrix phase.

Key words:  GH4169G alloy      heat treatment      microstructure      lattice parameter      phase transformation     
Received:  29 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00712     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/845

[1] Chen W, Chaturvedi M C.  Mater Sci Eng, 1994; A183: 81

[2] Wang Y, Lin L, Shao W Z, Zhen L, Zhang X M. Trans Mater Heat Treatment, 2007; 28(suppl): 176
(王岩, 林琳, 邵文柱, 甄良, 张新梅. 材料热处理学报, 2007; 28(增刊): 176
[3] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2003; A193: 198
[4] Rao G A, Kymar M, Srinivas M, Sarma D S. Mater Sci Eng, 2003; A355: 114
[5] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289
(谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)
[6] Zhang M Y, Wang Y X, Chen Z, Dong W P, Lai Q B, Zhang L P. Rare Met Mater Eng, 2009; 38: 962
(张明义, 王永欣, 陈铮, 董卫平, 来庆波, 张利鹏. 稀有金属材料与工程, 2009; 38: 962)
[7] Mukherji D, Gilles R, Barbier B, Del D G. Scr Mater, 2003; 48: 333
[8] Ding R G, Rong T S, Knott J F. Mater Sci Technol, 2006; 21: 85
[9] Zhang M Y, Chen Z, Wang Y X, Lu Y L, Zhang J, Fan X L. Acta Metall Sin, 2009; 45: 930
(张明义, 陈铮, 王永欣, 卢艳丽, 张静, 范晓丽. 金属学报, 2009; 45: 930)
[10] Briant C L. Metall Trans, 1988; 19A: 137
[11] Seah M P. Acta Metall, 1980; 28: 955
[12] Liu D, Luo Z J. Rare Met, 2005; 29: 152
(刘东, 罗子健. 稀有金属, 2005; 29: 152)
[13] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289
(谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)
[14] Wang Y, Shao W Z, Zhen L. Chin J Nonferrous Met, 2011; 21: 341
(王岩, 邵文柱, 甄良. 中国有色金属学报, 2011; 21: 341)
[15] Hu Z Q, Sun W R, Guo S R, Lu D Z. Chin J Nonferrous Met, 2001; 11: 947
(胡壮麒, 孙文儒, 郭守仁, 卢德忠. 中国有色金属学报, 2001; 11: 947)
[16] Kirman I, Warrington D H. Metall Trans, 1970; 1: 2667
[17] Chaturvedi M C, Han Y F. Met Sci, 1983; 17: 145
[18] V anderschaeve G, Escaig B. Philos Mag, 1983; 48A: 265
[19] Yamakov V, Wolf D, Phillpot S R, Mukherjee A, Gleiter H. Nat Mater, 2004; 3: 43
[20] Van Swygenhoven H, Derlet P M, Froseth A. Nat Mater, 2004; 3: 399
[21] Liao X Z, Zhou F, Lavernia E J, He D W, Zhu Y T. Appl Phys Lett, 2003; 83: 5062
[22] Wang J, Huang H C. Appl Phys Lett, 2004; 85: 5983
[23] Zhen L, Xu T D, Deng Q, Si H, Dong J X. Acta Metall Sin, 2007; 43: 893
(郑磊, 徐庭栋, 邓群, 司红, 董建新. 金属学报, 2007; 43: 893)
[24] Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Hu Z Q. Chin J Mater Res, 2000; 14: 183
(宋洪伟, 郭守仁, 卢德忠, 徐岩, 王玉兰, 胡壮麒. 材料研究学报, 2000; 14: 183)
[25] Ling B, Zhong B W, Yang Y R, Liang X F, Shen B. J Aeronaut Mater, 1994; 1: 1

(凌斌, 钟炳文, 杨玉荣, 梁学锋, 沈飚. 航空材料学报, 1994; 1: 1)

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!