Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 838-844    DOI:
Current Issue | Archive | Adv Search |
FORMATION AND ANALYSIS OF DISLOCATION NETWORK OF FGH95 POWDER METALLURGY Ni-BASED SUPERALLOY DURING CREEP
XIE Jun1), TIAN Sugui1), LIU Jiao1), ZHOU Xiaoming2), SU Yong1)
1) School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2) National Key Laboratory for Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

XIE Jun, TIAN Sugui, LIU Jiao, ZHOU Xiaoming, SU Yong. FORMATION AND ANALYSIS OF DISLOCATION NETWORK OF FGH95 POWDER METALLURGY Ni-BASED SUPERALLOY DURING CREEP. Acta Metall Sin, 2013, 49(7): 838-844.

Download:  PDF(5340KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Powder metallurgy Ni-based superalloys are used extensively in hot section of advanced aeroγengines due to their excellent comprehensive properties. During creep,the deformation mechanism of Ni-based superalloy depends on the alloy chemistry,morphology and volume fraction of γ phase and service conditions. Generally, the microstructure of FGH95 Ni-based alloy is closely related to the heat treatment regimes and its creep mechanism and properties are mainly determined by alloy cooling at oil path or molten salt bath. The difference of creep mechanism of molten salt cooling alloy from oil cooling alloy is that the dislocation networks may be formed in the matrix and therefore decrease the steady strain rate during creep to prolong the creep lifetime of the alloy. Unfortunately, the formation mechanism of dislocation networks in FGH95 Ni-based superalloy during creep is still unclear up to now. For this reason, by means of creep property measurement, TEM observation and diffraction contrast analysis, the formation of dislocation networks in FGH95 Ni-based superalloy during creep has been investigated. The results show that the 1/2<110> dislocations are activated on the octahedral slip systems in the γ matrix of the alloy at initial stage of creep and then they continue to multiply through dislocation reaction. When the alloy enters into the steady stage of creep, two sets of slipping dislocations with different Burgers vectors would encounter on the same crystal plane to react and form a hexagonal dislocation network, or two sets of slipping dislocations on different planes would intersect to form a dislocation network with quadrangle cells. Generally speaking, the dislocation network formation can decrease the dislocation mobility and  therefore restrain dislocation cross-slipping to enhance the creep resistance of the alloy. In the later stage of creep, the dislocations pile up near the regions of γ/γ interface and cause stress concentration, so that the deformed dislocations in the matrix shear and enter γ phase through damaged dislocation networks in γ/γ interface,which may be decomposed to form the partials and stacking fault.

Key words:  FGH95 powder metallurgy Ni-based alloy      creep      dislocation reaction      dislocation network      diffraction contrast analysis     
Received:  29 November 2012     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/838

[1] Kim M T, Kim D S, Oh O Y.  Mater Sci Eng, 2008; A480: 218

[2] Thorsten K, Dietmar B, Eckhard N.  Acta Mater, 2004; 52: 2095
[3] Sofiane T, Raphael C, Laure G, Bernard V.  Mater Sci Eng, 2008; A483-484: 598
[4] Tian S G, Xie J, Zhou X M, Qian B J, Lun J W, Yu L L, Wang W X.  Mater Sci Eng,2011; A528: 2076
[5] Li H Y, Song X P, Wang Y L, Chen G L.  Rare Met Mater Eng, 2009; 38: 64
(李红宇, 宋西平, 王艳丽, 陈国良. 稀有金属材料与工程, 2009; 38: 64)
[6] Jin D, Liu Z Q.  Int J Adv Manuf Technol, 2012; 60: 893
[7] Raujiol S, Pettinari F, Locq D, Caron P, Coujou A, Clement N.  Mater Sci Eng,2004; A387-389: 678
[8] Unocic R R, Viswanathan G B, Sarosi P M, Karthikeyan S, Li J, Mills M J.Mater Sci Eng, 2008; A483-484: 25
[9] Tao Y, Jia J, Liu J T.  J Iron Steel Res Int, 2010; 17: 73
[10] Shubhayu S, Pauline V N, Walter W M.  Metall Mater Trans, 2001; 32A: 2021
[11] Viswanathan G B, Sarosi P M.  Acta Mater, 2005; 53: 3041
[12] Karthikeyan S, Unocic R R, Sarosi P M, Viswanathan G B, Whitis D D,Mills M J.  Scr Mater, 2006; 54: 1157
[13] Kovarik L, Unocic R R, Li J, Sarosi P, Shen C, Wang Y, Mills M J.  Prog Mater Sci,2009; 54: 839
[14] Zhou L, Li S X, Wang Y C, Wang Z G.  Acta Metall Sin, 2005; 41: 245
(周丽, 李守新, 王跃臣, 王中光. 金属学报, 2005; 41: 245)
[15] Wu W P, Guo Y F, Wang Y S.  Sci China-Phys Mech Astron, 2012; 55: 419
[16] Zhang J X, Wang J C, Harada H, Koizumi Y.  Acta Mater, 2005; 53: 4623
[17] Xie J, Tian S G, Zhou X M, Yu X F, Wang W X.  Mater Sci Eng, 2012; A538: 306
[18] Tian S G, Liu Y, Zhou X M, Zhao Z G, Bao X Y, Wang W X.  Chin J Aeronaut, 2009; 22: 444
[19] Semiatin S L, McClary K E, Rollett A D, Robert C G, Payton E J, Zhang F, Gabb T P.Metall Mater Trans, 2012; 43A: 1649
[20] Tian S G, Xie J, Zhou X M, Qian B J, Lun J W, Yu L L, Wang W X.  Chin J Nonferrous Met,2010; 20: 852
(田素贵, 谢君, 周晓明, 钱本江, 伦建伟, 于丽丽, 汪武祥. 中国有色金属学报, 2010; 20: 852)
[21] Xie J, Tian S G, Zhou X M.  J Harbin Inst Technol, 2012; 44: 118
(谢君, 田素贵, 周晓明. 哈尔滨工业大学学报, 2012; 44: 118)
[22] Xie J, Tian S G, Zhou X M.  J Jiangsu Univ (Nat Sci Ed), 2012; 33: 576
(谢君, 田素贵, 周晓明. 江苏大学学报(自然科学版), 2012; 33: 576)
[23] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q.  Chin J Mater Res, 1999; 13: 633
(田素贵, 周慧华, 张静华, 杨洪才, 徐永波, 胡壮麒. 材料研究学报, 1999; 13: 633)
[24] Tian S G, Yu X F, Yang J H, Zhao N R, Xu Y B, Hu Z Q.  Mater Sci Eng, 2004; A379: 141
[25] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q.  Mater Sci Eng, 2000; A279: 160
 
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[7] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[9] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[10] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[11] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[12] LIU Tian, LUO Rui, CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[14] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[15] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
No Suggested Reading articles found!