Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 739-744    DOI: 10.3724/SP.J.1037.2013.00048
Current Issue | Archive | Adv Search |
EFFECTS OF Al ELEMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-ROLLED 316L STAINLESS STEEL
LA Peiqing, MENG Qian, YAO Liang, ZHOU Maoxiong, Wei Yupeng
Key Laboratory of Nonferrous Metal Materials of Lanzhou University of Technology, Lanzhou 730050
Cite this article: 

LA Peiqing, MENG Qian, YAO Liang, ZHOU Maoxiong, Wei Yupeng. EFFECTS OF Al ELEMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-ROLLED 316L STAINLESS STEEL. Acta Metall Sin, 2013, 49(6): 739-744.

Download:  PDF(3176KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

316L stainless steel is applied to high-temperature environment because of an attractive combination of mechanical properties and corrosion resistance in various aggressive environment. However, the corrosion resistance of 316L was reduced in a particular environment such as water vapor, aggressive sulfur gas which was attributed to the Cr2O3 protective scales formed in 316L. The Cr2O3 scales are compromised by water vapor due to the formation of volatile Cr oxy--hydroxide species. The Al2O3 is more thermodynamically stable in these enviroment than Cr2O3. In this work, the effects of Al element on the microstructure, mechanical properties and corrosion resistance of hot-rolled 316L were investigated. Microstructure evolution was observed by OM, EPMA and XRD. Mechanical properties were measured by tensile tests. The resistances to intergranular and uniform corrosion of hot-rolled 316L with different Al content were investigated by means of soaking method at 65%HNO3 and  5\%H2SO4, respectively. The results show that microstructure has changed from single γ to α+γdouble phase. With the increase of Al content in 316L, the yield strength and ultimate tensile strength increased but the ductility decreased. The fracture morphology of tensile was observed by SEM. Which indicated that the fracture mechanism behaved in ductile fracture. Corrosion rate of intergranular and uniform corrosion decreased remarkly as the Al content increased. The optimum Al content in terms of corrosion rate curve was about 2%. Improvment of corrosion resistance was mainly due to Al2O3 scale formed in 316L.

Key words:  hot-rolled 316L stainless steel      Al content      microstructure      mechanical property      corrosion performance     
Received:  25 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00048     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/739

[1] China Special Steel Enterprises Association Stainless Steel Branch Compiled.  Stainless Steel Practical Handbook. Beijing: China Science and Technology Press, 2003: 531

 (中国特钢企业协会不锈钢分会. 不锈钢实用手册. 北京: 中国科学技术出版社, 2003: 531)
[2] Gan J M.  Petro Chem Equip Technol, 2004; 13(4): 57
 (甘俊民. 石油化工设备技术, 2004; 13(4): 57
[3] Ramakrisnan V, McGurty J A, Jayarman N.  Oxid Met, 1988; 30: 185
[4] McGurty J A.  US Pat, 4086085, 1978
[5] Pivin J C, Delaunay D, Roques--Carmes C, Huntz A M, Lacombe P.  Corros Sci, 1980; 20: 35
[6] Bangaru N V, Krutenat R C,  J Vac Sci Technol, 1984; 2B: 806
[7] Zhang Y, Pint B A, Garner G W, Cooley K W, Haynes J A.  Surf Coat Technol, 2004; 35: 188
[8] Vijayalakshmi U, Rajeswari S.  J Sol--Gel Sci Technol, 2012; 63: 45
[9] Srinivasan V S, Sandhya R, Bhanu Sankara Rao K, Mannan S L, Raghavan K S.
 Int J Fatigue, 1991; 13: 471
[10] Prescott R, Graham M J.  Oxid Met, 1992; 38: 233
[11] Teng Z K, Liu C T, Ghosh G, Liaw P K, Fine M E.  Intermetallics, 2010; 18: 1437
[12] Kondo K, Miwa Y, Okubo N, Kaji Y, Tsukada T.  J Nucl Mater, 2011; 417: 892
[13] Brady M P, Yamamoto Y, Santella M L, Maziasz P J, Pint B A, Liu C T,
Lu Z P, Bei H.  JOM, 2008; 60(7): 12
[14] La P Q, Li Y F, Liu S G, Shen D, Wang H D.  Iron Steel, 2010; 45(5): 71
 (喇培清, 李玉峰, 刘闪光, 申达, 王鸿鼎. 钢铁, 2010; 45(5): 71)
[15] La P Q, Li Y F, Liu S G.  J Mater Prot, 2010; 43(12): 62
 (喇培清, 李玉峰, 刘闪光. 材料保护, 2010; 43(12): 62)
[16]  Brady M P, Yamamoto Y, Santella M L, Walker L R . Oxid Met, 2009; 72: 311
[17] Zhang B W, Liao S Z.  Shanghai Met, 1999; 21(2): 3
 (张邦维, 廖树帜. 上海金属, 1999; 21(2): 3)
[18] Asteman H, Spiegel M A.  Corros Sci, 2008; 50: 1734
[19] Wolff I M, Iorio L E, Rumpf T, Scheers P V T, Potgieter J H.  Mater Sci Eng, 1998;A241: 264
[20] Aydogdu G H, Aydinol M K.  Corros Sci, 2006; 48: 3565
[21] Sidhom H, Amadou T, Sahlaoui H, Braham C.  Metall Mater Trans, 2007; 38A: 1269
[22] Xiao J M.  The Problem of Metalography in Stainless Steel. Beijing: Metallurgical Industry Press, 2006: 155
 (肖纪美. 不锈钢的金属学问题. 北京: 冶金工业出版社, 2006: 155)
[23] Iron and Steel Research Institute of the Metallurgical Industry Ministry.  The Alloy Steels Manual. Beijing: China Industry Press, 1972: 42
 (冶金工业部钢铁研究院. 合金钢手册. 北京: 中国工业出版社, 1972: 42)
[24] Wu J.  Duplex Stainless Steel. Beijing: Metallurgical Industry Press, 1999: 22
 (吴玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 22)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!